1. 1- Kimmel P, Rosenberg M. Chronic Renal Disease. 1st ed. USA; Academic Press; 2014.
2. 2- Pérez-Sáez MJ, Prieto-Alhambra D, Barrios C, Crespo M, Redondo D, Nogués X .et al. Increased hip fracture and mortality in chronic kidney disease individuals: the importance of competing risks. Bone. 2015; 73: 154-9.
3. 3- Cueto-Manzano AM, Cortés-Sanabria L, Martínez-Ramírez HR, Rojas-Campos E, Gómez-Navarro B, Castillero-Manzano M. Prevalence of chronic kidney disease in an adult population. Archives of medical research. 2014; 45(6): 507-13.
4. 4- Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal. 2017; 15: 104-16.
5. 5- Gharaati Z, Pajoohan M. Diagnosis of Leukemia Type by Machine Learning: Dimension Reduction and Balancing. Medical Informatics Research Center. 2018; 5(1): 25-34. (origin Persian)
6. 6- Zheng T, Xie W, Xu L, He X, Zhang Y, You M .et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. International journal of medical informatics. 2017; 97: 120-7.
7. 7- Mercaldo F, Nardone V, Santone A. Diabetes mellitus affected patients classification and diagnosis through machine learning techniques. Procedia computer science. 2017; 112: 2519-28.
8. 8- Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R .et al. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 2016; 83: 13-22.
9. 9- Wu CC, Yeh WC, Hsu WD, Islam MM, Nguyen PA, Poly TN .et al. Prediction of fatty liver disease using machine learning algorithms. Computer methods and programs in biomedicine. 2019; 170: 23-9.
10. 10- Lynch C, Abdollahi B, Fuqua J, Carlo A, Bartholomai J, Balgemann R .et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. International Journal of Medical Informatics. 2017; 108: 1–8.
11. 11- Dumortier A, Beckjord E, Shiffman S, Sejdić E. Classifying smoking urges via machine learning. Computer methods and programs in biomedicine. 2016; 137: 203-13.
12. 12- Martínez-Martínez JM, Escandell-Montero P, Barbieri C, Soria-Olivas E, Mari F, Martínez-Sober M .et al. Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques. Computer methods and programs in biomedicine. 2014; 117(2): 208-17.
13. 13- Chen Z, Zhang Z, Zhu R, Xiang Y, Harrington PB. Diagnosis of patients with chronic kidney disease by using two fuzzy classifiers. Chemometrics and Intelligent Laboratory Systems. 2016; 153: 140-5.
14. 14- Muthukumar P, Krishnan GS. A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Applied Soft Computing. 2016; 41: 148-56.
15. 15- UCI Machine Learning Repository: Chronic Kidney Disease (CKD) Data Set, 2015. [Internet]. Available from: https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease
16. 16- Downey AB. Think stats: exploratory data analysis. USA: O'Reilly Media, Inc.; 2014.
17. 17- Cady F. The Data Science Handbook. 1st ed. USA: John Wiley & Sons; 2017.
18. 18- Deng N, Tian Y, Zhang C. Support vector machines: optimization based theory, algorithms, and extensions. 1st ed. USA: Chapman and Hall/CRC; 2012.
19. 19- Soares FM, Souza AM. Neural network programming with Java. 1st ed: Birmingham UK: Packt Publishing Ltd; 2017.
20. 20- Hackeling G. Mastering Machine Learning with scikit-learn. 1st ed: Birmingham UK: Packt Publishing Ltd; 2017.
21. 21- sheikhtaheri A, Hamedan F, Sanadgol H, Orooji A. Development of a fuzzy expert system to diagnose chronic kidney disease. Razi J Med Sci. 2019; 25(10): 46-60. (origin Persian)
22. 22- Akben SB. Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History. IRBM. 2018; 39(5): 353-8.
23. 23- Sinha P, Sinha P. Comparative study of chronic kidney disease prediction using KNN and SVM. Int J Eng Res Technol. 2015; 4: 608–12.
24. 24- Heravi M, Setayeshi S. Intelligent and fast recognition of heart disease based on synergy of linear neural network and logistic regression model. Journal of Mazandaran University of Medical Sciences. 2014; 24(112): 78-87. (origin Persian)