1. References
2. 1. Kimmel P, Rosenberg M. Chronic Renal Disease. 1st ed. USA: Academic Press; 2014.
3. 2. Pérez-Sáez MJ, Prieto-Alhambra D, Barrios C, Crespo M, Redondo D, Nogués X, et al. Increased hip fracture and mortality in kidney disease individuals: the importance of competing risks. Bone; 2015.73:154-9.
4. 3. Cueto-Manzano AM, Cortés-Sanabria L, Martínez-Ramírez HR, Rojas-Campos E, Gómez-Navarro B, Castillero-Manzano M. Prevalence of kidney disease in an adult population. Arch Med Res; 2014.45(6):507-13.
5. 4. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J; 2017.15:104-16.
6. 5. Gharaati Z, Pajoohan M. [Diagnosis of leukemia type by machine learning: dimension reduction and balancing]. IJDO; 2018.5(1):25-34. [Persian]
7. 6. Zheng T, Xie W, Xu L, He X, Zhang Y, You M, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform; 2017.97:120-7.
8. 7. Mercaldo F, Nardone V, Santone A. Diabetes mellitus affected patients classification and diagnosis through machine learning techniques. KES; 2017.112:2519-28.
9. 8. Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R, et al. The classification of endoscopy images with persistent homology. Patrec; 2016.83:13-22.
10. 9. 9- Wu CC, Yeh WC, Hsu WD, Islam MM, Nguyen PA, Poly TN, et al. Prediction of fatty liver disease using machine learning algorithms. Comput Methods Programs Biomed; 2019.170:23-9.
11. 10. Lynch C, Abdollahi B, Fuqua J, Carlo A, Bartholomai J, Balgemann R, et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Inform; 2017.108:1-8.
12. 11. Dumortier A, Beckjord E, Shiffman S, Sejdić E. Classifying smoking urges via machine learning. Comput Methods Programs Biomed; 2016.137:203-13.
13. 12. Martínez-Martínez JM, Escandell-Montero P, Barbieri C, Soria-Olivas E, Mari F, Martínez-Sober M .et al. Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques. Comput Methods Programs Biomed; 2014.117(2):208-17.
14. 13. Chen Z, Zhang Z, Zhu R, Xiang Y, Harrington PB. Diagnosis of patients with kidney disease by using two fuzzy classifiers. CMBEBIH; 2016.153:140-5.
15. 14. Muthukumar P, Krishnan GS. A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis. Appl Soft Comput; 2016.41:148-56.
16. 15. UCI Machine Learning Repository: Kidney disease (CKD) Data Set, 2015. [Internet]. Available from: https://archive.ics.uci.edu/ml/datasets/Chronic_ Kidney_Disease
17. 16. Downey AB. Think stats: exploratory data analysis. USA: O'Reilly Media, Inc.; 2014.
18. 17. Cady F. The Data Science Handbook. 1st ed. USA: John Wiley & Sons; 2017.
19. 18. Deng N, Tian Y, Zhang C. Support vector machines: optimization based theory, algorithms, and extensions. 1st ed. USA: Chapman and Hall/CRC; 2012.
20. 19. Soares FM, Souza AM. Neural network programming with Java. 1st ed: Birmingham UK: Packet Publishing Ltd; 2017.
21. 20. Hackeling G. Mastering Machine Learning with scikit-learn. 1st ed: Birmingham UK: Packet Publishing Ltd; 2017.
22. 21. Sheikhtaheri A, Hamedan F, Sanadgol H, Orooji A. [Development of a fuzzy expert system to diagnose kidney disease]. Razi J Med Sci; 2019.25(10):46-60. [Persian]
23. 22. Akben SB. Early stage kidney disease diagnosis by applying data mining methods to urinalysis, blood analysis and disease history. IRBM; 2018.39(5):353-8.
24. 23. Sinha P, Sinha P. Comparative study of kidney disease prediction using KNN and SVM. Int J Eng Res Technol; 2015.4:608-12.
25. 24. Heravi M, Setayeshi S. [Intelligent and fast recognition of heart disease based on synergy of linear neural network and logistic regression model]. J Mashhad Uni Med Sci; 2014.24(112):78-87. [Persian]