Volume 26, Issue 2 (5-2019)                   RJMS 2019, 26(2): 10-29 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mostafavi E S, Asoodeh A. Cell penetrating and transytosing peptides: powerful strategies for oral insulin delivery. RJMS 2019; 26 (2) :10-29
URL: http://rjms.iums.ac.ir/article-1-5455-en.html
Ferdowsi University of Mashhad, Mashhad, Iran , asoodeh@um.ac.ir
Abstract:   (3742 Views)

 Insulin is essential for type 1 and advanced type 2 diabetes to maintain blood glucose levels and increase the patient’s longevity. Frequent subcutaneous insulin injections are usually associated with pain, local tissue necrosis, infection and nerve damage. Recently, a number of new delivery methods such as oral insulin delivery have been developed to overcome these limitations and increase patient’s satisfaction. Oral delivery of insulin and other therapeutic peptides/ proteins are associated with poor intestinal absorption and enzymatic degradation in the gastrointestinal tract. However, Cell Penetrating (CPPs) and transytosing peptides have exhibited promising potential as carriers that conjugated to insulin and capable to across the intestinal epithelium. Numerous studies have shown that after conjugation of insulin with CPPs and transytosis peptides these biomolecules can retain their biological activity and also are stable and resistant to proteolytic degradation. In this review, following the introduction of different types of CPPs and also transytosis peptides, we have focused on the studies that they use these peptides as a powerful technology for oral insulin delivery. Based on the results of these studies, oral insulin will not only be a good candidate for painful injections in diabetic patients, but also mimics the physiology of endogenous insulin secreted by pancreas.
 

Full-Text [PDF 3094 kb]   (2752 Downloads)    
Type of Study: review article | Subject: Biochemistry

References
1. 1. Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro-and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev; 2014.43(10):3595-629.
2. 2. Chin J, Mahmud KF, Kim SE, Park K, Byun Y. Insight of current technologies for oral delivery of proteins and peptides. Drug Discov Today Technol; 2012.9(2):e105-e112.
3. 3. Park K, Kwon IC, Park K. Oral protein delivery: Current status and future prospect. React Funct Polym; 2011.71(3):280-7.
4. 4. Gedawy A, Martinez J, Al‐Salami H, Dass CR. Oral insulin delivery: existing barriers and current counter‐strategies. J Pharm Pharmacol; 2018.70(2):197-213.
5. 5. Lundquist, P. and P. Artursson, Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Del Rev; 2016.106:256-76.
6. 6. Dissanayake S, Denny WA, Gamage S, Sarojini V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release; 2017.250:62-76.
7. 7. Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv; 2013.20(6):237-46.
8. 8. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides; 2014.57:78-94.
9. 9. Zhang D, Wang J, Xu D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release; 2016.229:130-9.
10. 10. Layek B, Lipp L, Singh J. Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. Int J Mol Sci; 2015.16(12):28912-30.
11. 11. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell; 1988.55(6):1189-93.
12. 12. Green, M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell; 1988.55(6):1179-88.
13. 13. Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta Rev Cancer; 2011.1816(2):232-46.
14. 14. Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol; 1998.8(2):84-7.
15. 15. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther; 2004.10(6):1011-22.
16. 16. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv; 2013.4(11):1443-67.
17. 17. Tünnemann G, Ter‐Avetisyan G, Martin RM, Stöckl M, Herrmann A, Cardoso MC. Live‐cell analysis of cell penetration ability and toxicity of oligo‐arginines. J Peptide Sci; 2008.14(4):469-76.
18. 18. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem; 2001.276(8):5836-40.
19. 19. Prochiantz A. Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr Opin Neurobiol; 1996.6(5):629-34.
20. 20. Mueller J, Kretzschmar I, Volkmer R, Boisguerin P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem; 2008.19(12):2363-74.
21. 21. Oglęcka K, Lundberg P, Magzoub M, Eriksson LG, Langel Ü, Gräslund A. Relevance of the N-terminal NLS-like sequence of the prion protein for membrane perturbation effects. Biochim Biophys Acta Biomembr; 2008.1778(1):206-13.
22. 22. Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, et al. CPPsite: a curated database of cell penetrating peptides. Database; 2012.
23. 23. Oehlke J, Krause E, Wiesner B, Beyermann M, Bienert M. Extensive cellular uptake into endothelial cells of an amphipathic β‐sheet forming peptide. FEBS Lett; 1997.415(2): 196-9.
24. 24. Sadler K, Eom KD, Yang JL, Dimitrova Y, Tam JP. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry; 2002.41(48):14150-7.
25. 25. Daniels DS, Schepartz A. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc; 2007.129(47):14578-9.
26. 26. Martín I, Teixidó M, Giralt E. Design, synthesis and characterization of a new anionic cell‐penetrating peptide: SAP (E). Chem Bio Chem; 2011.12(6):896-903.
27. 27. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci; 2002.99(2):643-8.
28. 28. Leger AJ, Jacques SL, Badar J, Kaneider NC, Derian CK, Andrade-Gordon P, et al. Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation; 2006.113(9):1244-54.
29. 29. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell; 2005.120(3):303-13.
30. 30. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc; 2007.129(9):2456-7.
31. 31. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science; 2004.305(5689):1466-70.
32. 32. Brown CJ, Quah ST, Jong J, Goh AM, Chiam PC, Khoo KH, et al. Stapled peptides with improved potency and specificity that activate p53. ACS Chem Biol; 2012.8(3):506-12.
33. 33. Ochocki JD, Mullen DG, Wattenberg EV, Distefano MD. Evaluation of a cell penetrating prenylated peptide lacking an intrinsic fluorophore via in situ click reaction. Bioorg Med Chem Lett; 2011.21(17):4998-5001.
34. 34. Wollack JW, Zeliadt NA, Ochocki JD, Mullen DG, Barany G, Wattenberg EV, et al. Investigation of the sequence and length dependence for cell-penetrating prenylated peptides. Bioorg Med Chem Lett; 2010.20(1):161-3.
35. 35. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today; 2012.17(15-16):850-60.
36. 36. Ziegler A, Seelig J. High affinity of the cell-penetrating peptide HIV-1 Tat-PTD for DNA. Biochemistry; 2007.46(27):8138-45.
37. 37. Gehring WJ, Affolter M, Burglin T. Homeodomain proteins. Annu Rev Biochem; 1994.63(1):487-526.
38. 38. Chaloin L, Vidal P, Heitz A, Van Mau N, Méry J, Divita G, et al. Conformations of primary amphipathic carrier peptides in membrane mimicking environments. Biochemistry; 1997.36(37):11179-87.
39. 39. Splith K, Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J; 2011.40(4):387-97.
40. 40. Langedijk JP. Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop. J Biol Chem; 2002.277(7):5308-14.
41. 41. Langedijk J, Olijhoek T, Meloen R. Application, efficiency and cargo-dependence of transport peptides. in International Congress Series. 2005.
42. 42. Sawant R, Torchilin V. Intracellular transduction using cell-penetrating peptides. Mol Biosyst; 2010.6(4):628-40.
43. 43. Wagstaff KM, Jans DA. Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem; 2006.13(12):1371-87.
44. 44. Heitz F, Morris MC, Divita G. Twenty years of cell‐penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol; 2009.157(2):195-206.
45. 45. Munoz-Morris MA, Heitz F, Divita G, Morris MC. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Biochem Biophys Res Commun; 2007.355(4): 877-82.
46. 46. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide‐based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res; 2003.31(11):2717-24.
47. 47. Cardoso AM, Trabulo S, Cardoso AL, Lorents A, Morais CM, Gomes P, et al. S4 (13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Biochim Biophys Acta Biomembr; 2012.1818(3):877-88.
48. 48. Trabulo S, Cardoso AL, Mano M, De Lima MCP. Cell-penetrating peptides—mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals; 2010.3(4):961-93.
49. 49. Matsuzaki K, Yoneyama S, Murase O, Miyajima K. Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry; 1996.35(25):8450-6.
50. 50. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem; 1996.271(30):18188-93.
51. 51. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry; 1992.31(49):12416-23.
52. 52. Deshayes S, Morris MC, Divita G, Heitz F. Interactions of primary amphipathic cell penetrating peptides with model membranes: consequences on the mechanisms of intracellular delivery of therapeutics. Curr Pharm Des; 2005.11(28):3629-38.
53. 53. Alves ID, Goasdoué N, Correia I, Aubry S, Galanth C, Sagan S, et al. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim Biophys Acta Gen Subj; 2008. 1780(7-8):948-59.
54. 54. Joanne P, Galanth C, Goasdoué N, Nicolas P, Sagan S, Lavielle S, et al. Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta Biomembr; 2009.1788(9):1772-81.
55. 55. Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano; 2014.8(3):1972-94.
56. 56. Lundberg P, Langel Ü. A brief introduction to cell‐penetrating peptides. J Mol Recognit; 2003.16(5):227-33.
57. 57. Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol; 2007.8(8):603.
58. 58. Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J. Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci; 2006.119(22):4758-69.
59. 59. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol; 2018.
60. 60. Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic; 2002.3(5):311-20.
61. 61. Pujals S, Fernández-Carneado J, López-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta Biomembr; 2006.1758(3):264-79.
62. 62. Mäe M, Andaloussi SE, Lundin P, Oskolkov N, Johansson HJ, Guterstam P, et al. A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release; 2009.134(3):221-7.
63. 63. Han X, Bushweller JH, Cafiso DS, Tamm LK. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Mol Biol; 2001.8(8):715.
64. 64. Lönn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep; 2016.6:32301.
65. 65. Jones AT, Sayers EJ. Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Control Release; 2012.161(2):582-91.
66. 66. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys; 2011.
67. 67. Walrant A, Bechara C, Alves ID, Sagan S. Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they? Nanomedicine; 2012.7(1):133-43.
68. 68. Duchardt F, Fotin‐Mleczek M, Schwarz H, Fischer R, Brock R. A comprehensive model for the cellular uptake of cationic cell‐penetrating peptides. Traffic; 2007.8(7):848-66.
69. 69. Nair BG, Fukuda T, Mizuki T, Hanajiri T, Maekawa T. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis. Biochem Biophys Res Commun; 2012.421(4):763-7.
70. 70. Yuan H, Fales AM, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc; 2012.134(28):11358-61.
71. 71. Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem; 2006.281(6): 3544-51.
72. 72. Iwasa A, Akita H, Khalil I, Kogure K, Futaki S, Harashima H. Cellular uptake and subsequent intracellular trafficking of R8-liposomes introduced at low temperature. Biochim Biophys Acta Biomembr; 2006.1758(6):713-20.
73. 73. Rádis‐Baptista G, de la Torre BG, Andreu D. Insights into the uptake mechanism of NrTP, a cell‐penetrating peptide preferentially targeting the nucleolus of tumour cells. Chem Biol Drug Des; 2012.79(6):907-15.
74. 74. Åmand HL, Fant K, Nordén B, Esbjörner EK. Stimulated endocytosis in penetratin uptake: effect of arginine and lysine. Biochem Biophys Res Commun; 2008.371(4):621-5.
75. 75. Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, et al. Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int J Pharm; 2012.436(1-2):840-50.
76. 76. El-Andaloussi S, Johansson HJ, Holm T, Langel Ü. A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther; 2007.15(10): 1820-6.
77. 77. Johansson HJ, El-Andaloussi S, Holm T, Mäe M, Jänes J, Maimets T, et al. Characterization of a novel Cytotoxic cell‐penetrating Peptide Derived from p14ARF protein. Mol Ther; 2008.16(1):115-23.
78. 78. Liang JF, Yang VC. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem Biophys Res Commun; 2005.335(3):734-8.
79. 79. Kamei N, Morishita M, Eda Y, Ida N, Nishio R, Takayama K. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release; 2008.132(1): 21-5.
80. 80. Morishita M, Kamei N, J. Ehara, K. Isowa, and K. Takayama, A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release; 2007.118(2):177-84.
81. 81. Zhang Y, Li L, Han M, Hu J, Zhang L. Amphiphilic lipopeptide-mediated transport of insulin and cell membrane penetration mechanism. Molecules; 2015.20(12):21569-83.
82. 82. Kamei N, Kikuchi S, Takeda‐Morishita M, Terasawa Y, Yasuda A, Yamamoto S, et al. Determination of the optimal cell‐penetrating peptide sequence for intestinal insulin delivery based on molecular orbital analysis with self‐organizing maps. J Pharm Sci; 2013.102(2): 469-79.
83. 83. Liu X, Liu C, Zhang W, Xie C, Wei G, Lu W. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int J Pharm; 2013.448(1):159-67.
84. 84. Zhang L, Song L, Zhang C, Ren Y. Improving intestinal insulin absorption efficiency through coadministration of cell-penetrating peptide and hydroxypropyl-β-cyclodextrin. Carbohydr Polym; 2012.87 (2):1822-7.
85. 85. Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B, et al. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv; 2016.23(6):1980-91.
86. 86. He H, Ye J, Sheng J, Wang J, Huang Y, Chen G, et al. Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites. Front Chem Sci Eng; 2013.7(1):9-19.
87. 87. Shan W, Zhu X, Liu M, Li L, Zhong J, Sun W, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano; 2015.9(3):2345-56.
88. 88. Barbari GR, Dorkoosh F, Amini M, Javan NB, Sharifzadeh M, Atyabi F, et al. synthesis and characterization of a novel peptide-grafted cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study. Int J Nanomed; 2018.13:5127.
89. 89. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem; 2009.78:857-902.
90. 90. Preston JE, Abbott NJ, Begley DJ. Transcytosis of macromolecules at the blood–brain barrier. Adv Pharmacol; 2014.147-63.
91. 91. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol; 2009. 10(8):513.
92. 92. Wiśniewski JR, Ostasiewicz P, Duś K, Zielińska DF, Gnad F, Mann M. Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol Syst Biol; 2012.8(1):611.
93. 93. Tzaban S, Massol RH, Yen E, Hamman W, Frank SR, Lapierre LA, et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol; 2009.185(4):673-84.
94. 94. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med; 2013.5(213):213ra167-213ra167.
95. 95. Fyfe JC, Madsen M, Højrup P, Christensen EI, Tanner SM, de la Chapelle A, et al. The functional cobalamin (vitamin B12)–intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood; 2004.103(5):1573-9.
96. 96. Verma A, Sharma S, Gupta PK, Singh A, Teja BV, Dwivedi P, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater; 2016.31:288-300.
97. 97. Mickan A, Sarko D, Haberkorn U, Mier W. Rational design of CPP-based drug delivery systems: considerations from pharmacokinetics. Curr Pharm Biotechnol; 2014.15(3): 200-9.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Razi Journal of Medical Sciences

Designed & Developed by : Yektaweb