Volume 26, Issue 4 (7-2019)                   RJMS 2019, 26(4): 22-31 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rohani T. Application of CuO nano particle/multi-walled carbon nanotube nanocomposite modified electrode for simultaneous determination of dopamine and rutin in real samples. RJMS 2019; 26 (4) :22-31
URL: http://rjms.iums.ac.ir/article-1-5407-en.html
Payame Noor University, Tehran, Iran , th_rohani@yahoo.com
Abstract:   (3498 Views)
Background: In this work, a new method was developed for simultaneous determination of dopamine and rutin at glassy carbon electrode modified with CuO nanoparticles doped multi-walled carbon nanotubes (CuONPs–MWNT/GCE). This modified electrode has shown excellent electrocatalytic activity toward the oxidation of rutin in acetate buffer solution (pH=5). The modified electrode lowered the overpotential of the reaction by ~500 mV, and this advantage of modified electrode made it aproprate to measure trace values of dopamine in the presence of rutin.
Methods: First, the electrochemical behavior of CuO nanoparticles, incorporated in the modified electrode, was studied. Then, the behavior of oxidation of rutin and dopamine at the modified electrode was investigated by differntial puls voltammetry.
Results: A linear calibration plot was obtained over the range of 0.05-580 µmol L–1 rutin and 0.09-600 μmol L–1 for dopamine. Detection limits of 0.013 µmol L–1 rutin and 0.021 μmol L–1 dopamine were obtained. The relative standard deviation of ten replicate measurements for rutin and dopamine was measured 1.2% and 1.53% respectively.
Conclusion: The high sensitivity, low detection limit and reproducibility of the modified electrode, made the proposed electrode suitable for the determination of dopamine in the presence of rutin in pharmaceutical samples
Full-Text [PDF 1093 kb]   (4115 Downloads)    
Type of Study: Research | Subject: Biochemistry

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Razi Journal of Medical Sciences

Designed & Developed by : Yektaweb