Volume 29, Issue 12 (3-2023)                   RJMS 2023, 29(12): 479-486 | Back to browse issues page

Research code: 01
Ethics code: 01
Clinical trials code: 01

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostamkhani S, Hosseini S E, Mehrabani D, Hashemi S S. The Effect of Methamphetamine on Neuronal Stem Cells (SH-SY5Y cell line) in an Animal Model of a Mouse. RJMS 2023; 29 (12) :479-486
URL: http://rjms.iums.ac.ir/article-1-8001-en.html
Assistant Professor, Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran , mehrabad@outlook.com
Abstract:   (532 Views)
Background & Aims: The increasing use of methamphetamine, as a strong psychoactive drug, has caused severe concerns around the world. Abuse of glass or methamphetamine is considered a global problem for human health, especially in East and Southeast Asia as well as in North America due to its easy production and availability and cheap price. Methamphetamine increases the activity of the central nervous system and causes increased heart rate and blood pressure and even sudden death. Glass causes the discharge of dopamine terminals in the striatum, and in high doses, it also causes the discharge of serotonin terminals in the brain. Cognitive and movement disorders, attention, learning and memory, and brain damage are observed in glass users. Methamphetamine compounds in the central nervous system prevent the reabsorption of dopamine and other monoamine neurotransmitters and also facilitate the release of monoamine neurotransmitters into the synaptic spaces. Repeated use of methamphetamine drugs causes damage to dopaminergic and serotonergic nerve terminals in different parts of the brain. It leads to abnormalities such as anxiety, depression, and movement disorders such as Parkinson's disease. On the other hand, new evidence shows that addiction to narcotic drugs and amphetamines causes disruption in neurogenesis and weakens the function of neural stem cells/progenitors, and based on this, it has been claimed that this feature is one of the basic mechanisms of behavioral changes. In patients addicted to methamphetamine drugs. Therefore, it is possible to use stem cells/neural progenitors to reduce or treat the side effects caused by the use of methamphetamines. SH-SY5Y Neuroblastoma cell lines from the stem cell category (SH-SY5Y) are derived from immature neoplastic neural crest cells that display the properties of stem cells. These cells are derived from the bone marrow, which consists of a triple-cloned subset of SK-N-SH cells, and are widely used for neurological studies, focusing on neurotoxicity, protecting the nervous system against Neuropathogenic agents. It destroys nerve tissue, and is also used to differentiate neuron-like cells into cholinergic, adrenergic or dopaminergic neurons and to express one or more nerve fiber proteins. These cells also express opioid, muscarinic, and neurodevelopmental receptors. The SH-SY5Y neuronal cell line is able to express different alleles in various conditions and turn into nerve cells in front of compounds such as retinoic acid and neurogenic factors derived from the brain. Therefore, according to the mentioned characteristics and also the high ability of SH-SY5Y cells in long-term proliferation (without contamination) of nerve cells and taking into account the high and increasing consumption of methamphetamine substances, especially among young people and adolescents, and the effects of neurotoxicity. These substances in nerve cells, this study was conducted with the aim of investigating the cytotoxicity effect of methamphetamine on the SH-SY5Y cell line.
Methods: In this experimental study, SH-SY5Y cells were purchased from the Pasteur Institute of Iran and then incubated in DMEM medium with 10% fetal bovine serum, L-glutamine, penicillin, and streptomycin at 37 degrees and 5% CO2. After ensuring the multiplication of the cells and reaching the necessary density, the cells in the fourth passage, to the control and experimental groups treated with a dose of 0.6 mmol for 7 days (10 days after the cultivation of the cells) were divided and the growth of SH-SY5Y cells was calculated by flow Cytometry.
Results: SH-SY5Y cells, 24 hours after being transferred to the cell culture flask, wholly adhered to the bottom of the flask and were initially spherical, and became spindle-shaped after 24 hours. The results of the cell counting test on days 1 to 7 showed a strong decrease in the growth of cells treated with methamphetamine compared to the control group.
Conclusion: The results of this study showed that SH-SY5Y cells were spindle-shaped in the culture medium, similar to fibroblast cells, and based on the results of cell counting, it was determined that methamphetamine probably has the effects of cytotoxicity and inhibition of growth in the SH- cell line. Methamphetamine leads to progressive neurological disorders, which can be due to the changes and damage in the brain tissue along with neuropsychiatric symptoms. Many other mechanisms have been proposed for methamphetamine-induced toxicity; including toxicity stimulation, oxidative stress, mitochondrial dysfunction, and Neuroinflammation which is caused by Microgliosis, Astrogliosis, and cytokine induction and leads to apoptosis and neurotoxicity in the central nervous system. One of the strengths of this study is the time-dependent investigation of the growth of SH-SY5Y nerve cells in the presence of methamphetamine, and this test was repeated within 7 days, But it would have been better if this experiment was done in vivo (animal) and by injecting amphetamine into the animal, a behavioral test was taken from the animals and its effect on SH-SY5Y nerve cells was investigated.
Full-Text [PDF 901 kb]   (203 Downloads)    
Type of Study: Research | Subject: Clinical Psychiatry

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Razi Journal of Medical Sciences

Designed & Developed by : Yektaweb