جلد 26، شماره 3 - ( 3-1398 )                   جلد 26 شماره 3 صفحات 12-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


گروه زیست شناسی، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران ، yaghoubi_h@iauardabil.ac.ir
چکیده:   (2892 مشاهده)
زمینه و هدف: سیستم­های انتقال دارو با خاصیت کنترل رهایش DNA، امکان غلبه بر موانع خارج سلولی که سبب محدود شدن ژن‌درمانی می‌شود را فراهم آورده است. هدف از انجام این تحقیق بررسی تأثیر درصدهای متفاوت PLA:PEG در کوپلیمر PLA-PEG-PLA بر خصوصیات نانو ذرات حاصل بود.
روش کار: در این تحقیق با تغییر نسبت­های PLA:PEG در کوپلیمر PLA-PEG-PLA نانو ذراتی با خاصیت کنترل اندازه، سرعت رهایش DNA و بازده انتقال siRNA-FAM با موفقیت سنتز شد. بدین منظور کوپلیمرهای مختلفی از PLA-PEG-PLA در حضور لاکتیک اسید، پلی‌اتیلن گلیکول به‌عنوان ماده اولیه و همچنین stannous octoate به‌عنوان کاتالیز سنتز شد. سپس DNA یا siRNA-FAM با استفاده از تکنیک double emulsion solvent evaporation technique توسط کوپلیمر PLA-PEG-PLA انکپسوله شد. خصوصیات نانو ذرات حاصل از قبیل اندازه، مرفولوژی، الگوی رهایش، سمیت و بازده انتقال siRNA-FAM موردبررسی قرار گرفت.
یافته‌ها: تصاویر میکروسکوپ الکترونی نگاره نشان داد نانو ذرات حاصل دارای ساختار کروی و سطح صاف هستند. همچنین نتایج حاصل از DLS نشان داد با افزایش نسبت PLA در کوپلیمر PLA-PEG-PLA اندازه ذرات افزایش می­یابد علاوه براین نتایج ما نشان داد افزایش نسبت PLA در کوپلیمر PLA-PEG-PLA سبب کاهش سرعت رهایش DNA از نانو ذرات PLA-PEG-PLA/DNA می­گردد. همچنین در این تحقیق تأثیر تغییر نسبت PLA:PEG بر بازده انتقال siRNA-FAM توسط میکروسکوپ فلورسانس و دستگاه فلوسایتومتری موردبررسی قرار گرفت
نتیجه‌گیری: بین افزایش نسبت PLA در کوپلیمر PLA-PEG-PLA و افزایش بازده انتقال siRNA-FAM رابطه مستقیم وجود دارد.
 
متن کامل [PDF 2097 kb]   (1156 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بیوشیمی

فهرست منابع
1. 1. Bishop CJ, Majewski RL, Guiriba TR, Wilson DR, Bhise NS, Quiñones-Hinojosa A, et al. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater; 2016. 37:120-130.
2. 2. Chen J, Guo Zh, Tian H, Chen X. Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev; 2016.3:16023.
3. 3. Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdisciplinary Reviews. Nanomed Nanobiotechnol; 2015.7(3):315-329.
4. 4. Kafil V, Omidi Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in A431 cells. BioImpacts; 2011.1(1):23-30.
5. 5. Liu G, Ma S, Li S, Cheng R, Meng F, Liu H, et al. The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials; 2010.31(29):7575-7585.
6. 6. Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, et al. Battaglia. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mat; 2007.19(23): 4238-4.
7. 7. Lomas H, Du J, Canton I, Jeppe Madsen P, Warren NJ, et al. Efficient Encapsulation of Plasmid DNA in pH‐Sensitive PMPC–PDPA Polymersomes: Study of the Effect of PDPA Block Length on Copolymer–DNA Binding Affinity. Macromol Biosci; 2010.10(5):513-530.
8. 8. Locatelli E, Franchini MC. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res; 2012.14(12):1-17.
9. 9. Siddalingappa B, Benson HA, Brown DH, Batty KT, Chen Y. Stabilization of resveratrol in blood circulation by conjugation to mPEG and mPEG-PLA polymers: Investigation of conjugate linker and polymer composition on stability, metabolism, antioxidant activity and pharmacokinetic profile. PloS One; 2015.10(3): e0118824.
10. 10. Abebe Daniel G, Kandil R, Kraus T, Elsayed M, Merkel OM, Fujiwara T. Three‐Layered Biodegradable Micelles Prepared by Two‐Step Self‐Assembly of PLA‐PEI‐PLA and PLA‐PEG‐PLA Triblock Copolymers as Efficient Gene Delivery System. Macromol biosci; 2015.15(5):698-711.
11. 11. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. Poly (lactic acid)-poly (ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release; 2001.75(1):211-224.
12. 12. Jonas JB, Kreissig I, Degenring R. Repeated intravitreal injections of triamcinolone acetonide as treatment of progressive exudative age-related macular degeneration. Graef Arch Clin Exp; 2002. 240(10):872-873.
13. 13. Tamura H, Miyamoto K, Kiryu J, Miyahara S, Katsuta H, Hirose F, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci; 2005.46(4):1440-1444.
14. 14. Young S, Larkin G, Branley M, Lightman S. Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis. Clin Exp Ophthalmol; 2001.29(1):2-6.
15. 15. van Kooij Rothova BA, de Vries P. The pros and cons of intravitreal triamcinolone injections for uveitis and inflammatory cystoid macular edema. Ocul Immunol Inflamm; 2006.14(2):73-85.
16. 16. Tamboli V, Mishra GP, Mitra AK. Novel pentablock copolymer (PLA–PCL–PEG–PCL–PLA)-based nanoparticles for controlled drug delivery: effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polymer Sci; 2013.291(5):1235-1245.
17. 17. Vila A, Sanchez A, Pérez C, José Alonso M. PLA‐PEG nanospheres: new carriers for transmucosal delivery of proteins and plasmid DNA. Polymer Adv Technol; 2002.13(10‐12):851-858.
18. 18. Zou W, Liu Ch, Chen Zh. Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA. Nanoscale Res Lett; 2009.4(9):982.
19. 19. Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, et al. Preparation and drug release behaviors of nimodipine-loaded poly (caprolactone)–poly (ethylene oxide)–polylactide amphiphilic copolymer nanoparticles. Biomaterials; 2003.24(13):2395-2404.
20. 20. Hu Y, Xie J, Tong YW, Wang CH. Effect of PEG conformation and particle size on the cellular
21. uptake efficiency of nanoparticles with the HepG2 cells J Control Release; 2007.118(1):7-17.
22. 21. Asadi H, Hamidi M. Preparation of biodegradable nanoparticles of tri-block PLA–PEG–PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul; 2011.28(5):406-416.
23. 22. Hashemi M, Karami-Tehrani F, Ghavami S. Cytotoxicity effect of Cladribine on the MCF-7 human breast cancer cell line. Iran Biomed J; 2004. 8(1):7-12.
24. 23. He G, Venkatraman SS. ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and “stealth” particle characteristics. Int J Pharm; 2007. 334(1):48-55.
25. 24. Jie P, Venkatraman SS, Min F, Freddy BY, Huat GL. Micelle-like nanoparticles of star-branched PEO–PLA copolymers as chemotherapeutic carrier. J Control Release; 2005. 110(1):20-33.
26. 25. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol; 2013.4(2):100
27. 26. Cai S, Vijayan K, Cheng D, Lima EM, Discher DE. Micelles of different morphologies—advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res; 2007. 24(11):2099-2109.
28. 27. Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science; 1999.284(5417):1143-1146.
29. 28. Rajagopal K, Mahmud A, Christian DA, Pajerowski JD, Brown AEX. Curvature-coupled hydration of semicrystalline polymer amphiphiles yields flexible worm micelles but favors rigid vesicles: polycaprolactone-based block copolymers. Macromolecules; 2010.43(23):9736-9746.
30. 29. Wu X, Li S, Coumes F, Darcos V, Lai J, Himb K. Modeling and self-assembly behavior of PEG–PLA–PEG triblock copolymers in aqueous solution. Nanoscale; 2013.5(19):9010-9017.
31. 30. Danafar H, Rostamizadeh K. Drug-conjugated PLA–PEG–PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation. Pharm Dev Technol; 2015:1-11.
32. 31. Chen H, He S. PLA–PEG coated multifunctional imaging probe for targeted drug delivery. Mol Pharm; 2015.12(6):1885-1892.
33. 32. Frounchi M, Shamshiri S. Magnetic nanoparticles‐loaded PLA/PEG microspheres as drug carriers. J Biomed Mater Res A; 2015.103(5): 1893-1898.
34. 33. Scaffaro SR. reparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability. J Mech Behav Biomed Mater, 2016. 54:8-20.
35. 34. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm; 2005.60(2):247-266.
36. 35. Urbiola K, Blanco-Fernández L, Navarro G, Rödl W, Wagner E, Ogris M, et al. Evaluation of improved PAMAM-G5 conjugates for gene delivery targeted to the transferrin receptor. Eur J Pharm Biopharm; 2015.94:116-122.
37. 36. Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, et al. Interaction of poly (amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem; 2004.15(4):774-782.
38. 37. Seungpyo H, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem; 2006. 17(3):728-734.
39. 38. Bivas-Benita M, Romeijn S, Junginger HE, Borchard G. PLGA–PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm; 2004.58(1):1-6.
40. 39. Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PC, et al. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol®-PM) in patients with solid tumors. Ann Oncol; 2009:315.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.