تأثير تمرین هوازی و مصرف ال کارنیتین بر آنزیم‌های CPT2 و Malonyl-CoA در بافت هیپوکامپ رت‌های دیابتی

جمه‌ده مهدی انگوئی: دانشجوی دکتری فیزیولوژی عصبی عضلانی، گروه فیزیولوژی وارتسی، دانشگاه خوارزمی، تهران، ایران
مراد رجبی: استاد گروه فیزیولوژی وارتسی، دانشگاه تربیت مدرس، تهران، ایران
حمید رضا حکیمی: دانشجوی دکتری، گروه فیزیولوژی وارتسی، دانشگاه خوارزمی، تهران، ایران

چکیده
زمینه و هدف: دیابت و آسیب به بافت عصبی مختلف از جمله بافت عصبی یکی از مشکلات جوامع مختلف می‌باشد. هدف از انجام پژوهش تاثیر تمرین هوازی و مصرف ال کارنیتین بر آنزیم‌های CPT2 و Malonyl-CoA در هیپوکامپ رت‌های دیابتی بود.

روش کار: برای انجام تحقیق نهایی ۲۵ سر تازه و پیشرفت ۵۰ تا ۲۰۰ گرمی، از مرکز استانون پایتخت تهران تهیه و به طور تصادفی به گروه ترغیبی و گروه کنترلی توزیع شدند. طراحی و اجرای تمرینات بر اساس جدول زمان‌بندی تمرینات قرار گرفت. پس از تمرینات، سطح حادثه‌های آسیب‌زا در بافت هیپوکامپ اندازه‌گیری شدند. از روی آماری تحلیل واریانس یک‌رازه و آزمون تفکیکی توانی‌های جنبه‌جنبی و تحلیل داده‌ها انجام شد.

پایه‌گذاری: تحقیق‌ها نشان دهنده است که تمرینات نیازمند جلسه‌های تمرین‌های ارتفاعی و ۲۵ دقیقه دارد. درdek: نتایج نشان داد که تمرینات باعث افزایش سطح حادثه‌های آسیب‌زا در بافت هیپوکامپ می‌شود.

نتایج کلی: با توجه به تأثیر تمرین هوازی و مصرف ال کارنیتین در تیمار‌های مختلفی، استفاده از آنها می‌تواند به افزایش سطح حادثه‌های آسیب‌زا در بافت هیپوکامپ همکار باشد.

تعریف متغیر: گزارش نشده است.

متن جملات کننده: با مانی ناشی‌است.

شنوه استناد به این مقاله:

*انتشار این مقاله به صورت دسترسی آزاد مطلوب با ۰.۳ صورت کرگفتگه است.
The effect of aerobic training and intake of L-Carnitine on Malonyl-CoA and CPT2 enzymes in hippocampus tissue of diabetic rats

Mahdi Angouti, PhD Student in Neuromuscular Physiology, Department of Physiology, Kharazmi University, Tehran, Iran
Hamid Rajabi, Professor, Department of Sport Physiology, Kharazmi University, Tehran, Iran (* Corresponding author) hrjafari346@gmail.com
Reza Gharakhanlou, Professor, Department of Sport Physiology, Tarbiat-Modares University, Tehran, Iran
Mohammad Reza Dehkhoda, Associate Professor, Department of Sport Physiology, Kharazmi University, Tehran, Iran

Abstract

Background: Diabetes is known as one of the diseases that has imposed many health, social and economic problems on human societies and has spread widely in recent decades (1). Glucose metabolism and related disorders for the central nervous system (CNS) and astrocytes, which are the most important glial cells of the central nervous system; It is important. Therefore, disorders of the hypothalamus, cerebral cortex and hippocampus, vascular disorders of the brain, etc. are among the complications of diabetes on the central nervous system (3). Among the brain regions, the hippocampus is one of the most sensitive areas that is vulnerable to harmful factors such as ischemia, stress and especially diabetes, during which it undergoes neurophysiological, structural and molecular changes such as decreased neurogenesis 3 and atrophy. Hippocampus (4), which leads to one of the significant changes caused by diabetes, namely neuronal death in the hippocampus (5).

Due to the fact that insulin resistance and type 2 diabetes are characterized by hyperglycemia, hyperinsulinemia, increased plasma FFA levels, decreased fat oxidation ability and fat accumulation in body cells (6). And this increase in fat content has a high relationship with insulin resistance and the main cause of this accumulation of fat is mitochondrial dysfunction (7). Two mitochondrial enzymes that are important in the fat metabolism of cells in the body are Malonyl-CoA and CPT2. Malonyl-CoA, a coenzyme derived from malonic acid, plays an essential role in the transport of fatty acids into the mitochondria and in their synthesis. Are fatty acids (8). Accordingly, some evidence suggests that reducing the amount of malonyl coenzyme A reduces insulin resistance (10). In this regard, carnitine palmitol transferase 2 is a mitochondrial protein that is attached to the inner part of the mitochondrial membrane and plays a key role in the transport of fatty acids into the cell for beta oxidation (11). The regulation of CPT2 activity by Malonyl-CoA or other metabolic mediators is not directly or indirectly known (12). One of the supplements that has been shown to facilitate beta oxidation of long chain fatty acids and participate in the metabolism of branched-chain amino acids and fix cell membranes is L-carnitine (14). Due to the fact that L-carnitine is able to transport the acetate group from the mitochondria to the cytoplasm, thereby reducing the ratio of acetyl coenzyme A to coenzyme A in the mitochondria, thereby increasing the activity of the enzyme pyruvate dehydrogenase and thus glucose catabolism. Give (15). Therefore, taking this supplement may be able to improve mitochondrial disorders caused by diabetes in various tissues, including nerve tissue.

On the other hand, in addition to nutrition and various supplements, physical activity and exercise have been proposed as a way to control diabetes disorders (16). In confirmation of this, exercise activity in diabetic rats by reducing blood sugar levels, causes cell proliferation and increases the synaptic plasticity of neurons in the hippocampus of the brain (17). In fact, exercise creates endogenous neuroprotection by reducing endogenous neurons and protecting them against diabetic neuropathy, and ultimately reducing diabetic cognitive and motor disorders (18), thus increasing activity. Regular exercise can improve the malleability of the brain (19), the antioxidant system (20), and the upregulation of neurotrophins (21).

Considering the above and considering the negative effects of diabetes on various body systems on the one hand and irreparable damage to society, researchers are always looking to discover the best way to prevent and treat this dangerous complication. Various studies have been performed on the effect of increased plasma L-carnitine on FFA intake or exercise endurance capacity following oral administration or intravenous injection; In this regard, some findings suggest that L-carnitine supplementation increases fat oxidation (25) decreases carbohydrate oxidation (26) improves exercise (27) and reduces recovery time following exercise (28) Leads. Given the above and differences in research results on the effect of aerobic exercise and L-carnitine on mitochondrial disorders on the one hand and the lack of research on the subject of research on the hippocampus on the other hand and...
discovering a way to minimize the negative effects of diabetes. Specifically, the increase in cellular fat content in the hippocampus, the researcher seeks to answer the question of whether increased aerobic activity and consumption of L-carnitine have an effect on mitochondrial factors in the hippocampus of diabetic rats or not?

Methods: This research is of developmental type and its method is experimental. In which the ethical principles of working with laboratory animals, such as the availability of water and food, and proper storage conditions, and how to kill mice were observed.

The statistical population of the present study consisted of male Wistar rats in the weight range of 250 to 300 g and 6 to 8 weeks of age that were bred at the Razi Serum Laboratory Animal Breeding Center. From the statistical population, 45 rats were randomly selected as a statistical sample and randomly divided into 6 groups. Groups include 1) sham injection group (5 rats), 2) healthy control (8 rats), 3) diabetic control group (8 rats), 4) diabetic group receiving L-carnitine (8 rats), 5) The diabetic group was aerobic exercise (8 rats) 6) The diabetic group was aerobic exercise and received L-carnitine (8 rats). In diabetic group, animals become diabetic by injecting streptozotocin (STZ) at 55 mg / kg body weight. 48 hours after STZ injection, hyperglycemia was confirmed by glucose oxidase assay with biosystem kit. Thus, rats with serum glucose above 300 mg / dL were considered diabetic. In the diabetic and exercise groups, the animals ran on a treadmill for six weeks after induction of diabetes. Rats receiving L-carnitine received 100 mg of L-carnitine (29, 30) orally daily for 6 weeks. Aerobic exercise groups also performed a training program including aerobic exercise on a treadmill, 5 days a week, from 9 am to 11 am, for 6 weeks (31).

Results: In the present study, the effect of aerobic exercise and consumption of L-carnitine on the mitochondrial CPT2 content of hippocampal tissue was observed (p=0.008). However, there was no significant difference in the number of Malonyl-CoA mitochondria in the hippocampal tissue of diabetic rats as a result of aerobic exercise and L-carnitine administration (p=0.227). The effect of aerobic exercise and carnitine supplementation on Malonyl-CoA and CPT2 enzymes in the hippocampal tissue of diabetic rats was investigated. Based on the results of Tukey post hoc test, it was shown that diabetes is associated with a significant increase in Malonyl-CoA mitochondria of hippocampal tissue. Consistent with a study by Badiopada et al. (2006) that increased Malonyl-CoA levels and decreased fatty acid oxidation showed key abnormalities in insulin resistance in type 2 diabetic specimens (32).

In general, exercise can stimulate lipid oxidation and inhibit lipid synthesis in the liver, a process that is mediated by activation of the AMPK pathway (33). However, as the results of the present study show, the effect of Malonyl-CoA to exercise is different in hippocampal tissue, so it is possible that Malonyl-CoA levels in different tissues respond differently to exercise. The lack of significant change in Malonyl-CoA levels in the hippocampal tissue of diabetic specimens and the aerobic exercise program with L-carnitine can be attributed to changes in tissue insulin sensitivity and tissue oxidation. In the present study, the interaction between aerobic exercise and L-carnitine consumption had no effect on Malonyl-CoA hippocampus in rats. Although there are several mechanisms involved in supporting the effects of exercise on diabetes, the type of exercise and the dose of L-carnitine supplementation can also affect the results. Therefore, further studies are needed to discover the mechanism of Malonyl-CoA changes in the hippocampus, especially in diabetic specimens following L-carnitine exercise and consumption.

The present study showed that diabetes was associated with a significant decrease in hippocampal tissue CPT2 index and the results showed that aerobic exercise and L-carnitine consumption had no effect on rat hippocampal CPT2. But the interaction of aerobic exercise and supplementation significantly increased CPT2 in the rat hippocampus. The palmitoyl carnitine transferase (CPT) system contains two enzymes, CPT I and CPT II, and are involved in the transport of long-chain fatty acids into the mitochondrial compartment. The enzymes are CPT I in the outer membrane and CPT II in the inner membrane of the mitochondria (11). The results of Aminizadeh et al. (2017) on the regulation of cellular energy homeostasis in the skeletal muscle of male rats after four weeks of endurance training showed that the expression of carnitine palmitoyl transferase 1 beta gene in the endurance training group was significantly higher than the control group (34). However, the exact mechanisms of the effect of exercise on CPT II regulation in hippocampal tissue is not well understood. Also, the physiological significance of the natural inhibition of CPT II by malonyl coa has not been determined. However, due to the high sensitivity of CPT II to Malonyl-CoA, it can be stated that changes in CPT II level are dependent on the level of Malonyl-CoA (35).

Conclusion: Due to the effect of aerobic exercise and L-carnitine supplement alone and in interaction, using them in consultation with a physician is recommended for diabetics.

Conflicts of interest: None
Funding: None

Cite this article as:

*This work is published under CC BY-NC-SA 3.0 licence.
مقدمه
دریافت عنبیه‌یکی از بیماری‌های شناخته می‌شود که مشکلات بهداشتی، اجتماعی و اقتصادی بسیاری را به جامعه بریز و در دهه‌ی اخیر گسترش یافته‌ای است (1). و به سبب پیامدهای فراوان و ایجاد معیشت‌های مختلف در بین مردم به عناوین بیماری نام‌گذاری هم‌گرفته است درد (2). متابولیسم گلیکوز و اختلالات مربوط به آن برای (3) CNS عصبی مکرکی و ایمنی آتش‌زقیگی، بیماری‌های اختلالی، روان‌پزشکی، هیپوکامپی، اختلالات عروقی، نوروزشی (4) و این‌ها می‌توانند (5) تا در بازی درونی تجویز نشان دهد که که این اختلالات به‌طور محدود در سیستم عصبی مراکز و ... از عوارض ناشی از دیابت بر انسان عصبی مکرکی می‌باشد (3).
از میان مناطق مغزی، هیپوکامپی یکی از مخاطرات دیابتی است که دقیقاً ناکارآمد مصرف و آسیب رسان ماند ایسکمی، استرس و به وپزشکی آسیب‌پذیر بوده و در طی این دسترسخنیف تغییرات تغییرات مغزی مختلف با تغییرات بسیاری در سطح و فعالیت همکاری می‌کند (1).activoتحیطه‌ی بازی و تغییرات عمیق در این منطقه نشان داده شده است که این اختلالات به‌طور محدود در سیستم عصبی مراکز و ... از عوارض ناشی از دیابت بر انسان عصبی مکرکی می‌باشد (3).

در همین رابطه کارتنین قابلنتوانم ترددی در تغییرات یکی از متابولیسم‌های می‌باشد که به قسمت داخل غشا میوکاردی و قلب‌های است و در تغییرات اسید جریه در داخل سلول برای تغییر در اکسیداسیون نقش اساسی دارد (11). تنظیم غلایغت-۲ توسط کاهش A متابولیسم A به سیار و استحکام پیکر متابولیسم به
راز مانا، استرس و به وپزشکی آسیب‌پذیر بوده و در طی این دسترسخنیف تغییرات تغییرات مغزی مختلف با تغییرات عمیق در این منطقه نشان داده شده است که این اختلالات به‌طور محدود در سیستم عصبی مراکز و ... از عوارض ناشی از دیابت بر انسان عصبی مکرکی می‌باشد (3).

دیابت به عنوان یکی از بیماری‌هایی شباهت می‌شود که مشکلات بهداشتی، اجتماعی و اقتصادی بسیاری را به جامعه بریز و در دهه‌ی اخیر گسترش یافته‌ای است (1). و به سبب پیامدهای فراوان و ایجاد معیشت‌های مختلف در بین مردم به عناوین بیماری نام‌گذاری هم‌گرفته است درد (2). متابولیسم گلیکوز و اختلالات مربوط به آن برای (3) CNS عصبی مکرکی و ایمنی آتش‌زقیگی، بیماری‌های اختلالی، روان‌پزشکی، هیپوکامپی، اختلالات عروقی، نوروزشی (4) و این‌ها می‌توانند (5) تا در بازی درونی تجویز نشان داده شده که که این اختلالات به‌طور محدود در سیستم عصبی مراکز و ... از عوارض ناشی از دیابت بر انسان عصبی مکرکی می‌باشد (3).
روش کار
این تحقیق از نوع توسعه‌ای و روش آن تجربی می‌باشد. که در اصول اخلاقی کار با حیوانات آزمایشگاهی از قبلی در دستریس بودن آب و غذا و شرایط تغذیه مناسب مقدار قرار گرفت و چگونگی کشت و آموزش رعایت شد. همچنین برخی پژوهش‌ها نشان داده‌اند که کمیته‌های داخلی پژوهشگاه بدنی و اجتماعی، علوم تحقیقات و فناوری، قرار گرفتند و کنترل (IR.SRI.REC.1397.337) باز بودند. جامعه آماری یک هزار نفر از افراد متوسط سن و سنین در ۶۰ و ۷۰ سالگی از بهمنی به مدت ۶۰ روز در هفته (۳) تا (۵) روز در هفته به ایجاد واکنش مثبت به مصرف اکسیدسازی شده در رژیم غذایی این گروه مصرف گردید. 

مطالعات گوناگونی در مورد اثر افزایش ال-کاروتین در مصرف خوراکی در افرادی با مصرف کافی اکسیدسازی و رژیم غذایی مناسب است. (۱) در این مورد، در مصرف خوراکی به دنبال افزایش القایی سیستم از طریق افزایش اکسیدسازی در مصرف خوراکی، اکسیدسازی هوا و اکسیدسازی در دسترس مصرف در رژیم غذایی افرادی با مصرف اکسیدسازی است. (۴) در این مورد، در نظر گرفته شد که مصرف خوراکی مناسب در مصرف خوراکی، به دنبال افزایش القایی سیستم و اکسیدسازی عناصر در رژیم غذایی این گروه مصرف گردید.

میگرنه (Mingrone) و همکارانش (۱۹۹۶) با تریک مداوم ال-کاروتین در بیماران دیابتی نوع ۲ دردافتند که ال-کاروتین باعث افزایش ال-کاروتین و حساسیت به آسیبدوران در سلول‌ها می‌شود (۲۲). بهار (۴) و همکارانش در مقاله‌اش سال‌های ۲۰۱۱ در مورد افرادی با ال-کاروتین برای در حفاظت از دیابت، مصرف خوراکی مناسب با توجه به رژیم غذایی، وزن، مصرف خوراکی و رژیم غذایی این گروه مصرف گردید. 

http://rjms.iums.ac.ir
یافته‌ها
نتایج آزمون تحلیل واریانس یک طرفه نشان داد که تمرین هوازی و مصرف Al Karanti یک گروه آمدن Malonyl-CoA اختلاف معنی‌دار در میزان میتوکوندزیا و یافته‌های صورتی به شکل یک گروه تعیین گردید. در گروه آل کارانتین (20/0), و گروه‌های کنترل دیابتی بیش از 28/0, و شم با مکمل آل کارانتین (25/0) این تفاوت معنی‌دار وجود داشت (مجدار).

جدول ۱ - برآورد همبستگی ترمیمی

<table>
<thead>
<tr>
<th>ترمین هوازی</th>
<th>مصرف Al Karanti</th>
<th>سرعت</th>
<th>زمان</th>
<th>همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول ۱ - برآورد همبستگی ترمیمی</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بعد از ۶ هفته، تمام رت‌ها با کلوتروم از راه تنفسی بیهوش شده و جسم آنها در طول هفته وسط باید روی تخته برش بین خانه قرار داده شد و برده‌های منتهی به دقت برداشته و سپس هیپوکامپ به دقت تشخیص جدا شد و به نتایج از میان منتقل و در دمای ۷۰ درجه سانتی‌گراد برای انجام آزمایشات ذخیره شد. Malonyl-CoA و CPT2 برای منجش میزان پروتئین و به علت افزایش کلیه Zellbio Gmbh به بهروز ارزیاز کیست آل‌مان با حسایب ۱، نانوتیم بر میلیتی و برای بررسی توصیف داده‌ها از شاخص‌های گرایش مرکزی (میانگین و انحراف معیار) و از آزمون شیپر و ویلک، تحلیل واریانس یک طرفه و تعیین توکی واکنش از SPSS نسخه ۲۱ در سطح معنی‌داری ۰/۰۵ برای تجزیه و تحلیل داده‌ها استفاده شد. در نهایت برای استفاده Excel نمودارها نیز از ترمافاز رس متمایز از آزمون تحلیل واریانس یک طرفه نشان داد که تمرین هوازی و مصرف آل کارانتین بر میزان CPT2 می‌باشد.
بک و نتیجه‌گیری

در پژوهش حاضر تاثیر تمرين‌هوازی و مصرف الکارنین پنجمیه (CPT2) و Malonyl-CoA بر اثر افزایش مصرف الکارنین و تاثیر این مواد در لیسیز سلول‌های دیابتی در نمونه‌های دیابتی در بررسی قرار گرفت. در این مطالعه گروه‌های دیابتی و کنترل درصد و وزن متوسط جانوران در هر گروه به ترتیب در گروه‌های دیابتی درصد و وزن متوسط جانوران در هر گروه به ترتیب CPT2 و Malonyl-CoA از 100 و 200 و CPT2 و Malonyl-CoA از 100 و 200 درصد بر گروه کنترل درصد و وزن متوسط جانوران در هر گروه به ترتیب همکاران بایستند.

نتایج نشان داده که در هر گروه، با افزایش مصرف الکارنین و تاثیر درصد و وزن متوسط جانوران در هر گروه به ترتیب CPT2 و Malonyl-CoA از 100 و 200 درصد بر گروه کنترل درصد و وزن متوسط جانوران در هر گروه به ترتیب همکاران بایستند.

نتایج نشان داده که در هر گروه، با افزایش مصرف الکارنین و تاثیر درصد و وزن متوسط جانوران در هر گروه به ترتیب CPT2 و Malonyl-CoA از 100 و 200 درصد بر گروه کنترل درصد و وزن متوسط جانوران در هر گروه به ترتیب همکاران بایستند.

نتایج نشان داده که در هر گروه، با افزایش مصرف الکارنین و تاثیر درصد و وزن متوسط جانوران در هر گروه به ترتیب CPT2 و Malonyl-CoA از 100 و 200 درصد بر گروه کنترل درصد و وزن متوسط جانوران در هر گروه به ترتیب همکاران بایستند.
References


7. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and

References


7. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and
33. Bandypadhyay GK, Joseph GY, Ofrecio J, Olefsky JM. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes. 2006;55(8):2277-2285.