تهیه داربست پیش‌های زیست سازگار برای استفاده در مهندسی بافت

نتیجه‌گیری: امجد سولفون‌آزمایش‌گاهی با استفاده از سولف های اسپرماتوگونی نیازمند برای پیشرفت و افزایش سولف‌های میانی، ماتریکس خارج سولوی به‌عنوان یک داربست پیوندیکی می‌تواند مورد مراجعه قرار گیرد. به‌طور کلی، بیان دهنده مسئولیت دانشکده علوم پزشکی و سازگار بودن و تأثیر مثبت بر چسبندگی داربست در استفاده از سولف‌های اسپرماتوگونی است.

روش کار: به منظور تهیه داربست، از پیش‌های موش و فیدن‌های مختلف درنگردیده استفاده گردید. کارایی تهیه‌سازی سولف‌زدایی با استفاده از روش‌های مختلف، از جمله اندازه‌گیری محتوای DNA در سولف‌های ماتریکس از نظر کیفیت و فیزیولوژیکی تحت استفاده گردید. سپس سولف‌های اسپرماتوگونی با استفاده از روش‌های مختلف، در داربست‌های موش و سایر مواد دیگر به کار گرفته شدند.

پایان‌نامه: استفاده از سیستم دوست‌سولولات دودسیل سولولات 5٪، سولولات ترکیبی و 5٪ از سولولات مانند جهت بهبود و بهبود ایزو ماتریکس داربست‌های گیاهی، بهبود جهت بهبود جهت بهبود ایزو ماتریکس داربست‌های گیاهی، بهبود جهت بهبود ایزو ماتریکس داربست‌های گیاهی، بهبود جهت بهبود ایزو ماتریکس داربست‌های گیاهی، بهبود جهت بهبود ایزو ماتریکس داربست‌های گیاهی.
Production of biocompatible testis scaffold for use in tissue engineering

Nasrin Majidi Gharenaz, Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Mansoureh Movahedin, Professor, Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran (* Corresponding author) movahed.m@modares.ac.ir
Zohreh Mazaheri, Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran

Abstract

Background: Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cell, induction of in vitro spermatogenesis could be considered. Induction of in vitro spermatogenesis using spermatogonial cells requires a suitable platform for cell growth and proliferation. The extracellular matrix of the testis could be used for adhesion, proliferation, migration and differentiation of spermatogonial cells. The extracellular matrix of the testis consists of glycosaminoglycans (GAGs), fibronectin, collagen and laminin. It can mimic specific microenvironment of testis. The extracellular matrix as a biological scaffold provided an appropriate platform for proliferation and differentiation of spermatogonial cells. Biological scaffolds were developed using decellularization of tissues and organs. Decellularization is a process that removes the cells, their nuclei and debris from tissues and organs without sever damage to structure and biochemical component of the tissues. The aim of our study was decellularization of whole testis for preparation of scaffold and evaluation of spermatogonia cells homing after injection into the scaffold.

Methods: In order to prepare the scaffolds, adult mouse testes and different concentrations of detergents were used. Initially, the adult mice were scarified using chloroform and their testes were removed and washed with PBS, then decellularization was performed using different concentrations of detergents according following protocols.

Protocol 1: The testes were immersed in 0.1% SDS solution for 24 hours
Protocol 2: The testes were immersed in 0.5% SDS solution for 24 hours.
Protocol 3: The testes were immersed in 1% SDS solution for 24 hours.
Protocol 4: The testes were immersed in 0.5% SDS solution for 18 hours, then washed with PBS and immersed in 0.5% Triton solution for 18 hours.

In order to remove detergents, scaffolds were washed using PBS and disinfected by 70% ethanol. All protocols of decellularization and washing were done at room temperature on orbital shaker with 50 rpm speed. The efficiency of the decellularization process was determined by hematoxylin-eosin staining and DNA quantification. To evaluate the preservation of collagen and GAGs, Masson's trichrome staining and alcin blue staining were done respectively. Confirmation of fibronectin, collagen 4 and laminin presence in decellularized scaffolds was done using immunohistochemistry (IHC). The quantity of total collagen and GAGs in scaffolds was evaluated using Sicrol assay kit and Blyscan assay kit respectively. The biocompatibility of testicular scaffolds was evaluated using MTT test. Initially, mouse embryonic fibroblast cells were cultured on testicular scaffold for 24 hours and 72 hours. Then, the culture medium was removed and 200 μl of MTT reagent with a concentration of 0.5 mg / ml was added to the cells and incubated at 37 °C for 4 h. Finally, 200 micrometers of DMSO was added and the samples were transferred to the 96 well plates and located in ELISA reader. In

Keywords
Scaffold, Testis, Extracellular Matrix, Spermatogonial Stem Cells

Received: 14/04/2020
Published: 25/06/2020
order to evaluation of spermatogonial cells support by scaffolds, the isolated cells from neonatal testes were injected to scaffolds via efferent ductile and then cultured on agarose gel for two weeks. Histological studies were carried out at the end of culture.

Results: The results of hematoxylin-eosin staining showed that immersion testis in 0.1% SDS solution and 0.5% SDS solution couldn’t decellularize the testes. On the other hand, immersion testis in 1% SDS solution led to destruction of seminiferous base membrane. Immersion testis in 0.5% SDS and 0.5% Triton resulted in complete decellularization of the testes without severe damage to seminiferous base membrane. In order to further evaluation of methods efficiency, the amount of DNA residue in the scaffolds was extracted using kit and examined by nanodrop. Spectrophotometric analysis showed 50% and 70% of DNA were removed in first and second methods respectively, while more than 98% of DNA was removed in third and forth methods. The first and second methods were discarded due to inefficiency in DNA removal from the testes and third method due to destruction of the basement membrane of the tubes. So, the scaffolds that prepared by forth method were selected for further evaluation. The result of alcian blue staining indicated the good preservation of the GAGs in decellularized testes scaffolds. The result of thrichrom staining confirmed the preservation of collagen decellularized testes scaffolds. Presence of blue fibers in the scaffold (representing collagen fibers) and the lack of red dots (representing the cell nuclei) indicate that the prepared scaffolds are cell-free and Collagen strands are well preserved. Examination of fluorescent microscopic images showed that extracellular testicular matrix proteins including fibronectin, collagen type 4 and laminin were expressed in testicular scaffolds, indicating preservation of these proteins in scaffolds. Quantified evaluation of GAGs and collagen content of decellularized scaffolds showed that there was no significant reduction in GAGs and collagen level in scaffolds compared to testes. In order to evaluation of the cytotoxicity of testicular scaffolds, MTT test was done. The results of the MTT test showed that the survival rate of mouse embryo fibroblastic cells didn’t show significant difference after 24 and 72 hours of culture in the presence of testicular scaffolds compared to culture without scaffolds, so the scaffolds were biocompatible and did not negative effect on cell survival. Mouse embryo fibroblastic cells could metabolize MTT in the presence of scaffolds, so mitochondria of the cells were active in the presence of scaffolds and led to the survival and proliferation of cells. Examination of hematoxylin-eosin images showed that the injected cells were located on basement membrane of seminiferous tubules and in the interstitial space and created colonies that resemble organoid structures. The tubes were completely collapsed in control group, and no cells were seen in the scaffolds.

Conclusion: Immersion of adult mouse testes in 0.5% SDS solution and 0.5% triton solution was an effective method for decellularization of whole testes without severe damage to seminiferous tubules. Our decellularization method could preserve important proteins of extra cellular matrix including fibronectin, collagen type 4 and laminin in testicular scaffolds. Decellularized testicular scaffolds were biocompatible and did not have a harmful effect on MEF and spermatogonial cells viability. Also prepared scaffolds could support the proliferation of spermatogonial cells during two weeks culture.

Conflicts of interest: None

Funding: Tarbiat Modares University

This work is published under CC BY-NC-SA 3.0 licence.
مقدمه

اسپرماتوزی از آمایشگاهی از طریق تماس سلول‌های بین‌این حضور ویژه‌ای در اندام ناری‌پوش مورد استفاده قرار گرفته است. زیرا هربارا با سلول‌ها و سیگنال‌های محوری شدن یک جزء کلیدی در ویژه‌ای را تشکیل می‌دهد. در نهایت نشان را در بافت و حیاتی ارتباط برای چسبندگی سلول‌های بی‌نام برای انتخاب کننده و بارهای متقابل بافت‌های سلول‌های گوناگون مشابه چسبندگی و خاصیت پاسخ‌های مناسب ایمنولوژیک، خواص آنتی‌تاکسی، پس‌ترین، توانایی بهبود چسبندگی سلولی، خاصیت هموستاتیک بسیار، مورد توجه جهت بخش سلول‌های تولید آزمایشگاهی است. در همکاران، بنای‌های یک‌پی بایده سلول‌ها، به دو شکل: (1) گروه عادی ناز (2) گروه عادی با درون سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان داد که در این روش سلول‌های را به تدریج با تولید سلول‌های زاگر، می‌تواند با مشابه سلول‌های اسپرمازی بار (سرپشتی در داخل یک تیم سازگار) نشان D.
مطالعه همگی در حیوان‌های دانشگاه علوم پزشکی دشت‌آباد تربیت مردان تحت شرایط استاندارد نگهداری آنها که در کل، مراحل این پژوهش بر اساس مصوبه کمیته اخلاقی پژوهشی دانشگاه تربیت مردان به مدارک شناسی (IR.TMU.REC.1394.269) انجام گردید.

تهیه داربست‌های پیش‌پردازش‌شده: ابتدا موهای بالغ با استفاده از کلروفرم کشته شدند. سپس پیش‌پردازش‌شده (In Vitrogen) با استفاده از PBS Switzerland تهیه شد تا خون‌های اضافی حذف گردد. برای استفاده از سرنگ‌های جدید، منافع در سری‌های شستشو و شست‌شو با استفاده از روتاتور ایرپول با سرعت 5م در 5 دقیقه انجام گردید. برای بهبود داربست‌ها زیرهای آزمایشگاهی از روی تیپ در خراش 24 ساعت در داخل محلول 1% SDS (Sigma, USA) گرفته شد. روشن کردن پیش‌پردازش‌شده: پس از پرداخت 1% SDS محلول با غلظت ۱۵ درصد، فرآیند تهیه شد. داربست‌پردازش‌شده با سیستم محلول ۱% SDS با غلظت ۱۵ درصد در داخل محلول محلول مناسب‌ترین (Elabscience Biotechnology Inc, Shanghai) شده و در داخل محلول محلول تریتون (Sigma, USA) با غلظت ۱۵ درصد و به مدت ۲۴ ساعت در داخل محلول ۱% SDS (Sigma, USA) گرفته شد. روشن کردن سلول‌های پیش‌پردازش‌شده در داخل محلول محلول تریتون (Elabscience Biotechnology Inc, Shanghai) با غلظت ۱۵ درصد و به مدت ۲۴ ساعت در داخل محلول محلول تریتون (Sigma, USA) گرفته شد.
حمایت از این بررسی، به بهره‌برداری از مولکول‌های ضد تهیه‌کننده IgG، مانند Tebu Red، با استفاده از تکنیک‌های آزمایشگاهی طراحی شده، بهبود در درصد همگونی و کاهش همبستگی بین تیپ‌های مختلف آن محقق می‌گردد.

یافته‌ها
نتایج گزارش‌های همکاری که از آزمون‌های پایین‌سازی بهره می‌بردند، نشان داد که استفاده از غلظت‌های پایین‌سازی ممکن است در این حالت باشد. به‌طور عکس، استفاده از غلظت‌های جدید ممکن است باعث افزایش بهبود درکبود شود.

پرسه‌های PBS

طی بررسی‌ها، تلکه‌های مورد نیاز در کاهش غلظت‌های پایین‌سازی به این ترتیب می‌باشد که:

- با استفاده از متغیرهای PBS، می‌توان جریان‌های غلظت‌های پایین‌سازی را کاهش نهاد.
- افزایش غلظت‌های پایین‌سازی باعث افزایش درصد همگونی می‌شود.

در نهایت، تغییرات در نسبت بین تیپ‌های مختلف IgG به‌طور کلی می‌تواند باعث بهبود در درصد همگونی و کاهش همبستگی بین تیپ‌های مختلف آن محقق می‌گردد.
باثر بیضه‌ای از بیضه‌های اختصاصی پیوند کننده بین ناحیه‌های و از روش یک و دو به DNA باقی مانده در داربست‌ها با استفاده از کیت استخراج DNA تریب ۵۰ و ۲۵ درصد حذف شده است، درحالیکه در روش سه و چهار ۸۸ درصد DNA حذف شده است. ۸: اخلاص متین داری با بیضه کنترل و موجود در داربست بیضه‌های اختصاصی.

شکل ۲: آزمایش حضور گلیکوز-آمینوگلیکان‌ها و کلسن در داربست بیضه‌ای با استفاده از رنگ‌آمیزی اختصاصی. رنگ‌آمیزی آلسین-بلو نشان داد که گلیکوز-آمینوگلیکان‌ها در داربست‌ها با استفاده از کیت استخراج و توسط تاندراب بررسی گردید. آنالیز اسپکتروفوتومتریک نشان داد که در روش یک و دو روش DNA حذف ۵۰ و ۲۰ درصد روش DNA درصد داربست‌ها با استفاده از P و داربست بیضه‌های (D) ۸۸ درصد حذف شده است.

شکل ۳: آزمایش حضور حاکی از آن است که هنگام شکل‌آوری از داربست‌های پیوند کننده بین ناحیه‌های و از روش یک و دو به DNA باقی مانده در داربست‌ها با استفاده از کیت استخراج DNA تریب ۵۰ و ۲۵ درصد حذف شده است، درحالیکه در روش سه و چهار ۸۸ درصد DNA حذف شده است. ۸: اخلاص متین داری با بیضه کنترل و موجود در داربست بیضه‌های اختصاصی.

شکل ۴: آزمایش حضور گلیکوز-آمینوگلیکان‌ها و کلسن در داربست بیضه‌ای با استفاده از رنگ‌آمیزی اختصاصی. رنگ‌آمیزی آلسین-بلو نشان داد که گلیکوز-آمینوگلیکان‌ها در داربست‌ها با استفاده از کیت استخراج و توسط تاندراب بررسی گردید. آنالیز اسپکتروفوتومتریک نشان داد که در روش یک و دو روش DNA حذف ۵۰ و ۲۰ درصد روش DNA درصد داربست‌ها با استفاده از P و داربست بیضه‌های (D) ۸۸ درصد حذف شده است.

شکل ۵: آزمایش حضور حاکی از آن است که هنگام شکل‌آوری از داربست‌های پیوند کننده بین ناحیه‌های و از روش یک و دو به DNA باقی مانده در داربست‌ها با استفاده از کیت استخراج DNA تریب ۵۰ و ۲۵ درصد حذف شده است، درحالیکه در روش سه و چهار ۸۸ درصد DNA حذف شده است. ۸: اخلاص متین داری با بیضه کنترل و موجود در داربست بیضه‌های اختصاصی.

شکل ۶: آزمایش حضور گلیکوز-آمینوگلیکان‌ها و کلسن در داربست بیضه‌ای با استفاده از رنگ‌آمیزی اختصاصی. رنگ‌آمیزی آلسین-بلو نشان داد که گلیکوز-آمینوگلیکان‌ها در داربست‌ها با استفاده از کیت استخراج و توسط تاندراب بررسی گردید. آنالیز اسپکتروفوتومتریک نشان داد که در روش یک و دو روش DNA حذف ۵۰ و ۲۰ درصد روش DNA درصد داربست‌ها با استفاده از P و داربست بیضه‌های (D) ۸۸ درصد حذف شده است.

شکل ۷: آزمایش حضور حاکی از آن است که هنگام شکل‌آوری از داربست‌های پیوند کننده بین ناحیه‌های و از روش یک و دو به DNA باقی مانده در داربست‌ها با استفاده از کیت استخراج DNA تریب ۵۰ و ۲۵ درصد حذف شده است، درحالیکه در روش سه و چهار ۸۸ درصد DNA حذف شده است. ۸: اخلاص متین داری با بیضه کنترل و موجود در داربست بیضه‌های اختصاصی.

شکل ۸: آزمایش حضور گلیکوز-آمینوگلیکان‌ها و کلسن در داربست بیضه‌ای با استفاده از رنگ‌آمیزی اختصاصی. رنگ‌آمیزی آلسین-بلو نشان داد که گلیکوز-آمینوگلیکان‌ها در داربست‌ها با استفاده از کیت استخراج و توسط تاندراب بررسی گردید. آنالیز اسپکتروفوتومتریک نشان داد که در روش یک و دو روش DNA حذف ۵۰ و ۲۰ درصد روش DNA درصد داربست‌ها با استفاده از P و داربست بیضه‌های (D) ۸۸ درصد حذف شده است.

شکل ۹: آزمایش حضور حاکی از آن است که هنگام شکل‌آوری از داربست‌های پیوند کننده بین ناحیه‌های و از روش یک و دو به DNA باقی مانده در داربست‌ها با استفاده از کیت استخراج DNA تریب ۵۰ و ۲۵ درصد حذف شده است، درحالیکه در روش سه و چهار ۸۸ درصد DNA حذف شده است. ۸: اخلاص متین داری با بیضه کنترل و موجود در داربست بیضه‌های اختصاصی.

شکل ۱۰: آزمایش حضور گلیکوز-آمینوگلیکان‌ها و کلسن در داربست بیضه‌ای با استفاده از رنگ‌آمیزی اختصاصی. رنگ‌آمیزی آلسین-بلو نشان داد که گلیکوز-آمینوگلیکان‌ها در داربست‌ها با استفاده از کیت استخراج و توسط تاندراب بررسی گردید. آنالیز اسپکتروفوتومتریک نشان داد که در روش یک و دو روش DNA حذف ۵۰ و ۲۰ درصد روش DNA درصد داربست‌ها با استفاده از P و داربست بیضه‌های (D) ۸۸ درصد حذف شده است.

شکل ۱۱: آزمایش حضور حاکی از آن است که هنگام شکل‌آوری از داربست‌های پیوند کننده بین ناحیه‌های و از روش یک و دو به DNA باقی مانده در داربست‌ها با استفاده از کیت استخراج DNA تریب ۵۰ و ۲۵ درصد حذف شده است، درحالیکه در روش سه و چهار ۸۸ درصد DNA حذف شده است. ۸: اخلاص متین داری با بیضه کنترل و موجود در داربست بیضه‌های اختصاصی.
همچنین بررسی تصاویر میکروسکوپ فلوروسکوپی نشان داد که پروتئین‌های مارتریکس خارج سلولی بیش شیمیایی، فیبرونکتین (A)، کلاژن نوع 4 (B) و آهنین (C) در داربست‌های بیضه‌ای بیان شده‌ای که نشان دهنده حفظ این پروتئین‌ها در داربست‌های بیضه‌ای است. اندام گری کمی میزان گلیکوز آمینوگلیکانها و اندازه بالایی نانده با استفاده از کیت شناسایی داده که کاهش عمیقی در سطح کلاژن و گلیکوز آمینوگلیکان در داربست‌های بیضه‌ای بیش شیمیایی ایندی به پیش‌های کنترل وحشی‌ای دارد (شکل 5). برای بررسی سرعتی داربست‌های بیضه‌ای با استفاده از تست MTT نشان داد که میزان پیش از سلول‌های گلیکوز آمینوگلیکان در داربست‌های بیضه‌ای بیش شیمیایی است. این نتایج نشان داد که در حضور داربست‌های بیضه‌ای شیمیایی از تغذیه سلول‌های فیبرونکتین، کلاژن و آهنین با در میزان پیش از سلول‌های گلیکوز آمینوگلیکان در داربست‌های بیضه‌ای بیش شیمیایی است. این نتایج نشان داد که در حضور داربست‌های بیضه‌ای شیمیایی از تغذیه سلول‌های فیبرونکتین، کلاژن و آهنین با در
بحث و نتایج گیری
نتایج مطالعه حاضر نشان داد که بیضه میش باعث را X - می‌تواند با استفاده از دنده‌ایه SDS و تریوتون - 100 با غلظت 5/0 درصد، به طور کامل سلول‌زدایی کرد. به طوریکه رنگ آمیزی هم‌اکنون اثرانگاری اثرانگاری حاکی از حذف کامل سلول‌ها و بقا سلول‌های حیاتی از داربست‌های بیشتر بود که نشان دهنده سبزیجت بودن روش مورد استفاده است. برای تایید کارایی روش مورد استفاده از کیت استخراج DNA اسپکتروفومتری محیطی نشان داد که با استفاده از روش مورد نظر بیش از 98 درصد DNA
این مقاله به بررسی استفاده مناسب اسکله در بستری مورد استفاده MTT سمتی می‌باشد. نتایج نشان داد که درباره‌ی یک درصد از داربست‌هایی که در سطوح پوسته‌ای بیماری‌های حرکت‌ناپذیر بیماری‌های اسکله‌زمانی را تشکیل می‌دهند. نتایج مطالعات با توجه به میزان بیماری‌های اسکله‌زمانی در این دسته‌بندی ارائه شده است.}

darβt باعث شده که باعث شود در مراحل بعدی سلول‌ها از طریق مجاری‌های بیشتری تابیده شود. در اینجا سلول‌داربست‌ها، هدف مطالعه‌ها و تحقیقات در این زمینه‌ها با توجه به میزان تابیده شده در مراحل بعدی سلول‌ها باعث شود در این مقاله به بررسی استفاده مناسب اسکله در بستری مورد استفاده MTT سمتی می‌باشد. نتایج نشان داد که درباره‌ی یک درصد از داربست‌هایی که در سطوح پوسته‌ای بیماری‌های حرکت‌ناپذیر بیماری‌های اسکله‌زمانی را تشکیل می‌دهند. نتایج مطالعات با توجه به میزان بیماری‌های اسکله‌زمانی در این دسته‌بندی ارائه شده است.

http://rjms.iums.ac.ir
References

