نفض‌های توالی EPIYA در برهم‌زنی مسیره‌های پیام‌رسانی سلولی و خطر بروز سرطان

fsafari@guilan.ac.ir

چکیده
بروتئین‌های آلترن برخی از باکتری‌های مهاجم دارای توالی EPIYA و یا توالی مشابه انسنده که شامل اسید ایمیدی های EPIYA گلوتامیک است. این پروتئین‌ها با باکتری‌های میتوانید اقدام به رقابت با این اسید ایمیدی های EPIYA بگیرند و با کاهش نشان و توالی حاوی دمین SH2 سلول می‌باید کمک نمایند. اکثرین در فاصله داده است که مبنا در شرایط BAX و در اثر پر ارشاد توانایی حاوی SH2 به رهگیری با پیام‌رسانی جلو دمین SH2 داخل سلولی بطور اختصاصی می‌باشد. همچنین فرض اینکه دارای حاوی EPIYA ممکن است توسط باکتری‌های مهاجم بوده و برای براترپان دیگر بروز و توالی EPIYA پیام‌رسانی سلولی می‌گردد. در همین ارتباط نشان داده است که در بروز این پروتئین‌ها مبنا در طول این اسید ایمیدی EPIYA می‌تواند سلولی بتواند توانایی حاوی EPIYA در تولید پیام‌رسانی و دیگر پروتئین‌های میتواند به عنوان توالی دمین SH2 کلیدی در جهت برهم‌زنی مسیره‌های پیام‌رسانی سلولی و خطر بروز سرطان مورد بررسی قرار می‌گیرد.

تعارض منافع: گزارش نشد است.

منبع حمایت کننده: حمایت مالی دانش‌آموزیست.

شوه استناد به این مقاله:

*انتشار این مقاله بهصورت دسترسی آزاد مطابق با CC BY-NC-SA 3.0 صورت گرفته است.
The roles of EPIYA sequence to perturb the cellular signaling pathways and risk of cancer

Fatemeh Safari, Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran (*Corresponding author) fsafari@guilan.ac.ir
Malieheh Shokouhfar, Biotechnology Research Center, International Campus, Shahid Sadoghi University of Medical Science, Yazd, Iran

Abstract

It was shown that several pathogenic bacterial effector proteins including Helicobacter pylori CagA, Anaplasma phagocytophilum AnkA, enteropathogenic Escherichia coli (EPEC) Tir protein, Chlamydia trachomatis Tarp, Haemophilus ducreyi LspA protein, and Bartonella henselae Bep proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III secretion system (or TTSS) or type IV secretion system (TFSS), where they undergo tyrosine phosphorylation at the EPIYA (or a similar sequences). The bacterial EPIYA effectors trigger interaction with huge number of host cell SH2 domain-containing proteins and thereby, they enable to manipulate host cell signaling for more effective infection. The EPIYA (or a similar sequence) of pathogenic bacterial effector proteins was discovered in H. pylori CagA. It was shown that cagA H. pylori strains significantly increase the risk of developing severe gastritis and gastric carcinoma. On the base of the geographic region, four distinct EPIYA-sites have been described, EPIYA-A, -B, -C, and -D, each of which is conserved. Remarkably, the EPIYA-A and EPIYA-B sequences are found in strains throughout the world, but EPIYA-C is mainly present in strains from Western countries (Australia, Europe and North America) and some Asian countries (India and Malaysia), while the EPIYA-D sequence predominates in China, Japan and Korea. Different numbers of EPIYA (or similar sequence) can appear at the C-terminal of CagA variants. CagA proteins were tyrosine phosphorylated by Src family kinases (SFKs) and then by c-Abl kinase. It was shown that EPIYA-A, -B, and -C (or –D) segments can interact with SH2 domain-containing protein tyrosine phosphatase 1 (SHP1), SH2 domain-containing protein tyrosine phosphatase 2 (SHP2), phosphatidylinositol 3-kinase (PI3K), growth factor receptor bound protein 2 (Grb2), growth factor receptor bound protein 7 (Grb7), growth factor receptor bound protein 10 (Grb10), the C-terminal Src kinase (Csk), Ras GTPase activating protein 1 (RasGap1), Crk like proto-oncogene, adaptor protein (CrkL). Moreover, it was found that H. pylori induced a characteristic morphology of host epithelial cells, which has been referred to as the hummingbird phenotype. It was revealed that the hummingbird phenotype was resulting from regulation of both the actin cytoskeleton and focal adhesion and it may be involved in carcinogenesis. Notably, it was well established that CagA injection induces the elongation morphology of host cell. Furthermore, the roles of the EPIYA (or a similar sequence) in perturbation of eukaryotic signal transduction pathways for the other pathogenic bacterial effector proteins were investigated. A. phagocytophilum AnkA contains four different types of EPIYA segments termed EPIYA-A, -B, -C and –D. These EPIYA sequences were phosphorylated by either SFKs or c-Abl kinase and it can interact with SHP1. SHP1 phosphatase activity in infected neutrophils was deregulated after SHP1/AnkA complex formation. EPEC Tir was tyrosine phosphorylated at EPIYA similar sequences and it was able to interact with the SH2

Keywords
EPIYA sequences, Bacterial effector proteins, Host proteins, Cell signaling, Cancer

Received: 02/05/2020
Published: 09/09/2020
domain-containing adaptor protein Nck and Nck/Tir complex formation promotes actin polymerization. *C. terachomatis* Tarp was tyrosine phosphorylated at the EPIYA similar sequences resulting the rearrangements of the cytoskeletal of host cells. The EPIYA similar sequences of *H. ducreyi* LspA were tyrosine phosphorylated by SFKs and it was found that tyrosine-phosphorylated LspA inhibited SFKs activity. SFKs are responsible for tyrosine phosphorylation of *B. henselae* Bep at EPIYA similar sequences. After tyrosine phosphorylation *B. henselae* Bep at EPIYA similar sequence, they acquire the ability to interact with Csk and SHP2.

From the other side, it was also shown that a large number of mammalian proteins contain EPIYA (or a similar sequence). Until now, functional EPIYA (or a similar sequence) was found only in two mammalian proteins (Pragmin and P140Cap). Pragmin (or SGK223), a cytoplasmic pseudokinase, contains a functional EPIYA sequences in its N-terminal region. It was found that Pragmin is tyrosine-phosphorylated at EPIYA sequence by SFKs, Csk or in response to external stimuli such as epidermal growth factor (EGF). Moreover, P140Cap (or SRC kinase signaling inhibitor 1) contains two functional EPIYA sequences (EPLYA, EGLYA) in its N-terminus and it was tyrosine-phosphorylated at EPLYA and EGLYA sequences by c-Abl kinase. Tyrosine phosphorylation at EPIYA sequences enable them to interact with Csk (a SH2-domain containing protein) specifically. Also, it was found that the overexpression of Pragmin in AGS cells induced the elongated cell morphology. In this regard, it was previously shown that SGK223/Pragmin expression were increased in pancreatic cancer cells and overexpression of SGK223/Pragmin promotes elongation of cell morphology and migration of cells in pancreatic cancer cells.

It was proposed that the mammalian EPIYA motifs might have been exploited by pathogenic bacteria and they act as pathogenic “Master keys” to perturb multiple signaling pathways through promiscuous binding with SH2 domain-containing proteins. Also, it was found that EPIYA sequences in some bacterial effector proteins (such as EPEC Tir and *H. pylori* CagA) to be unfolded and they showed structural flexibility features. So, it would be interesting to determine whether the other bacterial EPIYA effectors (such as *A. phagocytophilum* AnkA, *C. terachomatis* TarP, *H. ducreyi* LspA, and *B. henselae* Bep) have disordered features at EPIYA (or similar sequences). In mammals, the structure of proteins containing functional EPIYA (or similar sequences) has not investigated yet. It seems that mammalian proteins containing functional EPIYA sequences do not have disordered features at EPIYA (or similar sequences) and thereby, they unable to interact with multiple SH2-domain containing proteins. Notably, the most of mammalian proteins containing functional EPIYA (or similar sequences) are unknown and there is no information about them. By using PhosphoSite, it was explored the EPIYA (or similar sequences) in mammalian proteins and it was predicted that the most of mammalian proteins containing EPIYA (or similar sequences) showed no tyrosine phosphorylation at the EPIYA (or similar sequences). It seems that the EPIYA (or similar sequences) of mammalian proteins are not available for related kinases because of possible their restricted and inflexible structures. Up to now, the structure of mammalian host proteins containing EPIYA motifs is not revealed.

In this review, we investigate the roles of functional EPIYA sequences as key sequences in several pathogenic bacterial effector proteins and mammalian proteins to perturb cell signal transduction pathways that it was associated with a large number of diseases including cancer.

Conflicts of interest: None

Funding: None

Cite this article as:

This work is published under CC BY-NC-SA 3.0 licence.
طقه سفري و مليحة شکوه فرد

مقدمه

باکتری های پا و زیستن در میزان‌های سیعی کنند که شرایط بهینه رشدشان را تندیس و دسته‌ای سبب‌های پیامرسانی باشند. به همین منظور توده‌های با هر سبب میزان این واژه می‌باشد. سیستم‌های چهار فراهم نمی‌باشد. سیستم‌های ترشحی مقاومت بیماری انتقال توده‌های باکتری‌ها تا کنون شناخته شده است. مطالعات نشان داده است که تعدادی از باکتری‌ها که اغلب با کمک سیستم‌های ترشحی نوع (type III/IV secretion system) سیو و یا نوع جهشگر TOL (T), چندین مایع با هر سبب میزان وارد نمی‌باشد. تاکنون توده‌های باکتری‌های با هر سبب میزان معادل یک شش (SH2) تا کنون در توده‌های باکتری‌ها با شهاب (EPIYA) نوع باکتری‌های مختلف توله‌پیگری (با شهاب) CagA شناسایی شده است که شامل مشخصات Anka (H. pylori) و C. trachomatis Tarp (A. phagocytophilum) LspA (C. trachomatis) H. ducreyi و H. pylori های در و تزیین باشند. اطلاعاتی موجود نیست. با این توده‌ها، در واژه‌های میزان باکتری‌ها در باکتری‌های دیگر حاوی توله EPIYA پیچیده می‌باشد (با شهاب) CagA است که زیست برنامه‌ای که در اینجا می‌باشد.

همچنین، توله‌ها میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد. میزان باکتری‌های پلوریوی در اینجا می‌باشد. میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.

CagA

میزان باکتری‌ها در باکتری‌های پلوریوی در اینجا می‌باشد.
تشخیص توافقی EPIYA و گروه آدنوسیتوفیل‌های سطحی میزان آنها

<table>
<thead>
<tr>
<th>پاژن</th>
<th>تکنس مربوط</th>
<th>موئی EPIYA</th>
<th>شماره</th>
<th>دورین برهم کنش کننده با EPIYA</th>
<th>موئی این برهم کنش با EPIYA</th>
<th>شماره</th>
<th>دورین برهم کنش کننده با EPIYA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARHGEF1 (143-145)</td>
<td>c-Abl, S6K</td>
<td>EPIYA</td>
<td>SH2</td>
<td>SHP1, SHP2, GRb2, Grb7, RasGap1</td>
<td>CSK, SHP1, SHP2, Grb2, Grb7, RasGap1</td>
<td>SH2</td>
<td>SHP1, SHP2, Grb2, Grb7, RasGap1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>پاژن</th>
<th>تکنس مربوط</th>
<th>موئی EPIYA</th>
<th>شماره</th>
<th>دورین برهم کنش کننده با EPIYA</th>
<th>موئی این برهم کنش با EPIYA</th>
<th>شماره</th>
<th>دورین برهم کنش کننده با EPIYA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARHGEF1 (143-145)</td>
<td>c-Abl, S6K</td>
<td>EPIYA</td>
<td>SH2</td>
<td>SHP1, SHP2, GRb2, Grb7, RasGap1</td>
<td>CSK, SHP1, SHP2, Grb2, Grb7, RasGap1</td>
<td>SH2</td>
<td>SHP1, SHP2, Grb2, Grb7, RasGap1</td>
</tr>
</tbody>
</table>

ra دارا است. نتیجه تحقیقات متعدد نشان داده است که CSK (C- terminal of Src Kinase) پیشگیر نگه داشتن شمولیت EPIYA-A و EPIYA-B با پروتئین‌های EPIYA-C (قلمه EPIYA-A و EPIYA-B). در نتیجه این قلمه، CSK از طریق تبی دو مسئله مربوط به پروتئین‌ها EPIYA-A و EPIYA-B ارائه می‌شود. در این مسئله، CSK به سیستم تکس‌های شرکت‌کننده در این تحقیق می‌رود. نتایج آن در این موضوع می‌تواند به این شکل باشد که:

- EPIYA-A و EPIYA-B در بخش‌های نشان‌دهنده CSK، در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.
- CSK از طریق تبی دو مسئله مربوط به پروتئین‌ها EPIYA-A و EPIYA-B ارائه می‌شود.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله می‌رساند که EPIYA-A و EPIYA-B در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله می‌رساند که EPIYA-A و EPIYA-B در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله می‌رساند که EPIYA-A و EPIYA-B در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله می‌رساند که EPIYA-A و EPIYA-B در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله می‌رساند که EPIYA-A و EPIYA-B در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله می‌رساند که EPIYA-A و EPIYA-B در محیط‌های حاوی این پروتئین‌ها روند تکس‌های CSK را با عوامل مختلف تحقیق می‌کنند.

نتایج این تحقیق نشان می‌دهد که در بخش‌های نشان‌دهنده CSK، این پروتئین‌ها نسبت به CSK خاصیت مثبتی ندارند. این نتایج به این مسئله MGE Alumun پزشکی رازی

http://irjms.iums.ac.ir

دوره 17، شماره 6، شماره 1399
این اسید امینه تیتروزین موجود در سرکان‌های Abl, Syk مورد نظر فسفوریته می‌کند (۲۷). نشان داده شده است که تیتروزین فسفوریته شده در پروتئین حاوی آسیا در پایان مهم‌ترین حرکت‌های اکتین در سلول‌های میزبان به اندوستیز بالکنی می‌شود. بهره‌برداری از محققان موثر باشد (۲۸) و با دمین (SHC1) SH2 توانایی باعث اکتشاف می‌گردد. سلول‌های آلوهده به این باکتری می‌شود. همچنین برهم کنش Tarp-SHCl باعث مقاومت تراکونتیپ نوگ سوم به داخل سلول‌های اپی تلی منتقل می‌شود. موتیف‌های شمش‌دای کلایمایدا تراکوتامین کی باکتری گرم منفی و داخل سلول‌های اپی الجاری است و از طریق تهیه جنسی منتقل اطراف سیستم Tarp. به عنوان یک نگهبان می‌شود که توانایی ا_TW نیز در ENIYE با EPIYA تراکوتامین گرم منفی در تأکید شناخته نشده است (۲۹).

LspA

حرض‌ور موینتیف در تروکسین EPIYA

هموفیلوس دودکهای و مکانیسم مولکول‌ای این در سلول‌های میزان هموفیلوس دودکهای یک بسیل گرم منفی است که

Huminbird

شکل ۱- هموفیلوس دودکهای و انفوتروین CagA

پیشچه پسیست‌ترشته

بهر کل با کم‌پیش‌های های دیگر SH2

در سلول‌های AGS

CagA

در سلول‌های CagA

CagA
نشاند که با استفاده از EPIYA، پروتئین‌ها سلول‌ها را به قدری ترکیب می‌کنند که می‌تواند باعث افزایش حساسیت مقابل واکسن‌های ایمنی شود. این نتایج به طور کلی نشان می‌دهد که EPIYA به عنوان یک پیوند بین سلول‌های کوکسیون می‌تواند نقش مهمی در جابجایی و تابعیت سلول‌ها داشته باشد.

Bep

Bep (B-cell epitope) یک تکنیک انتخاب سلول‌های تولیدکننده EPIYA است که در یک سلول معکوس می‌باشد و در صورت تغییر ترکیب آن سلول، می‌تواند باعث اکسپرسیون سلول‌های کوکسیون شود. این نتایج نشان می‌دهد که Bep ممکن است به عنوان یک سلول‌های تولیدکننده EPIYA در صورت دریافت حساسیت در مقابل واکسن‌های ایمنی استفاده شود.

پروتئین‌های دومین SH2

پروتئین‌های دومین SH2 شامل پروتئین‌هایی هستند که در این آزمایش به عنوان جزئی از ترکیبات Granulysin، P140Cap و Src23 در دسترس بودند. این نتایج نشان می‌دهد که Bep ممکن است به عنوان یک سلول‌های تولیدکننده EPIYA در صورت دریافت حساسیت در مقابل واکسن‌های ایمنی استفاده شود.

پروتئین‌های سلول‌های کوکسیون

پروتئین‌های سلول‌های کوکسیون شامل پروتئین‌هایی هستند که در این آزمایش به عنوان جزئی از ترکیبات Granulysin، P140Cap و Src23 در دسترس بودند. این نتایج نشان می‌دهد که Bep ممکن است به عنوان یک سلول‌های تولیدکننده EPIYA در صورت دریافت حساسیت در مقابل واکسن‌های ایمنی استفاده شود.

پروتئین‌های موثر EPIYA

پروتئین‌های موثر EPIYA شامل پروتئین‌هایی هستند که در این آزمایش به عنوان جزئی از ترکیبات Granulysin، P140Cap و Src23 در دسترس بودند. این نتایج نشان می‌دهد که Bep ممکن است به عنوان یک سلول‌های تولیدکننده EPIYA در صورت دریافت حساسیت در مقابل واکسن‌های ایمنی استفاده شود.
مکانیسم مکلولی موتیف در پرگمین EPIYA (Pragmin/Sgg223)

پرگمین (Sgg223) یک کیناز کنافی است که در بخش N سیتوپلاسمی است. در پرگمین به دلیل اینکه در پیوندی رشته‌ای EPIYA و از با سلول‌های پیشرو از پرگمین EPIYA می‌باشد (شکل ۲، این). موتیف EPIYA توسط تیروزین کیناز Src و یا در پاسخ به تحریک گیرنده فاکتور رشد CSK ایبرمی (EGFR) فسفوریل شده‌اند. در پرگمین (Sgg223) به روشی مشابه به EPIYA-B وجود دارد که پرگمین و CSK ایبرمی همیشه مونتایون می‌باشد. جابه‌جایی میان EPIYA جابه‌جایی میان EPIYA به دلیل اینکه در پرگمین EPIYA-B و CSK مونتایون می‌باشد.

در سیتوپلاسمی می‌گردد. برای مثال CSK. Src فعال می‌شود.

۲- پروتئین های مربوط به هوا موتیف های EPIYA اگر در موارد و محلی موتیف EPIYA موجود در آن (۵،۶) بوده و محل موتیف ها هم مربوط به EPIYA بوده (۴،۵) در بافت چشمی نمونه پرگمین می‌باشد. موتیف های مناسب در پروتئین مربوط به (۴،۵).

http://rjms.iums.ac.ir
که با وجود حضور دو موتیف ال EGLYA و EPLYA در پروتئین، همچنان شاهد بر همکنش اخلاصی هر دو موتیف مذکور فقط با CSK هستیم.

EPIYA

فرمی‌های شاه کلید بودن موتیف‌های EPIYA باکتریایی و مکانیسم های مولکولی آنها در سال ۲۰۰۹، خاصیت انتخاب پذیری را در موتیف پروتئین نشان می‌دهد (شکل ۲ ج). EPIYA مکانیسم‌ملکولی موتیف‌های P140Cap/SRC kinase signaling inhibitor 1 در پروتئین معاینه پیش گرفته است، نشان داده شده که پرگس در سطح بسیار بالایی بین شاهد و همچنین موتیف EPIYA در فسفریله شده است (۷). پیش این می‌کند که بدانیم نرم افزارهای پیش بینی خاصیت انتخاب پذیری در سکنان و پروتئین، خاصیت انتخاب پذیری را در پروتئین نشان می‌دهد (شکل ۲، ج). EPIYA در پروتئین می‌شود (شکل ۲) و EPIYA در سی‌آر انتخابی P140Cap/SRC kinase signaling inhibitor 1 (۲، ج) با کمک نرم افزارهای مربوطه عدم انتخاب پذیری را ایجاد می‌کند. موتیف EPIYA به عنوان یک مکانیسم مهم انتخاب پذیری را در پروتئین نشان می‌دهد (شکل ۲، ج). EPIYA در پروتئین می‌شود (شکل ۲، ج)
نتیجه گیری

حضور گسترشده و نکردن متواوی مویتیف‌های EPIYA در میزبانی باکتریایی نشان از نقص‌های کلیدی و مهم این تولید در بیمارسای سلولی دارد و احتمالاً در این مسیرهای بیمارسای سلولی خصوصی در جهت پایان باکتریا در سلول میزان، به عنوان ضرورت سیار مهم می‌باشد. محصولات ایجاد شده ناشان می‌دهد که تکار دردسته متواوی مویتیف‌های حاصل از ترکیب‌ها توانایی کمیت‌های توانایی توانایی انتقال‌پذیر توجه نشان می‌دهد. این تغییرات احتمالاً باعث می‌شود که این تولید این همکاران در فاکتور مویتیف EPEC پذیری در میزان مطلوب توانایی انتقال‌پذیر نشان می‌دهد. این نشان این شاید است. تقریباً بیشتر مویتیف‌های SH2 و SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿﺎ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿÁ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿÁ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿÁ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گسترشده و نکردن متواوی مویتیف‌های EPIYA باکتریایی حاول این مویتیف‌ها نکار متواوی مویتیف‌های مشابه مهارت است. این متواوی مویتیف‌های این میزان در میزان وقف SH2 ﺑﯿÁ و این مویتیف‌های SH2 ﻣﻮرد ظن و نکردن گستresh
23. Lin M, Dulk-Ras D, Hooykaas PJ, Rikihisa Y. Anaplasma phagocytophilum AnkA secreted by

References
11. Hatakeyama M. Oncogenic mechanisms of EPIYA

http://rjms.iuums.ac.ir

46. Dyson HJ, Wright PE. Intrinsically