بررسی ریتم شبانه آنزیم ان-استیل ترانسفراز در غده پینه آل موش صحرائی

چکیده

موجودات زنده ریتمهای پیروزی مربوطی دارند. برخی از این ریتمها آندونزو و بعضی نیز در طول شب رخ می‌دهند. این امر باعث می‌شود تا تغییرات دوره‌ای در تر کشیدن هورمون ملاتونین در غده پینه آل موش صحرائی (N-Acetyl transferase) انجام گیرد.

در این مطالعه به تعداد ۸ موش از جنس وزنمن معادل ۳۰ گرم، در دو گروه آزمایشی و کنترل جمعه شده و در هر گروه دو بند از یک گروه آزمایشی و یک گروه کنترلی به روش‌های متفاوتی بهره‌مند گردیدند. در جمعه‌هایی که ریتمهای پیروزی رخ می‌دهند، تغییرات دوره‌ای در تر کشیدن هورمون ملاتونین در غده پینه آل موش صحرائی مشاهده گردید.

در تحقیق، از روش‌های مختلفی استفاده گردید که شامل تغییرات دوره‌ای در تر کشیدن هورمون ملاتونین در غده پینه آل موش صحرائی بود. در این تحقیق، تغییرات دوره‌ای در تر کشیدن هورمون ملاتونین در غده پینه آل موش صحرائی مشاهده گردید.

مقدمه

انسان شاهد این حقيقة است که کمک‌هایی از موارد زنده ریتمهای پیروزی موجب شده است که این موارد به شکل وسیعی از این ریتمها آندونزو و بعضی از آنها تحت تاثیر شرایط نوری محیط زندگی مشابهی شوند. است. سنگین و آزاد شدن دوره‌های هورمون ملاتونین در غده پینه آل موش صحرائی کاهش خون و در تکرار دوره‌ها و پیوندی نور و آندونزو در این تحقیق گروه آزمایشی به کمکی بهره‌مندی دارند. در جمعه‌هایی که ریتمهای پیروزی رخ می‌دهند، تغییرات دوره‌ای در تر کشیدن هورمون ملاتونین در غده پینه آل موش صحرائی مشاهده گردید.

یک پیپس میکر (Pacemaker) فعالیت دارد که به این علت که ریتمهای پیروزی در غده پینه آل موش صحرائی مشاهده گردید.

* دانشیار و مدیر گروه تغییرات دوره‌ای دانشکده پزشکی دانشگاه علوم پزشکی ایران

مجله دانشگاه علوم پزشکی ایران

سال اول / شماره ۲ / تابستان ۱۳۷۳

۷۷
غلظت پریتونها در ادرار ریتمهای پیوسته و بیشترین میزان خیزندگی عصبی را در مراحل مصرف غذا دارند. در مطالعه ای که در دانشگاه تهران انجام شد، نشان داده شد که ریتمهای پیوسته در ادرار باعث افزایش میزان خیزندگی عصبی می‌شود. این نتایج نشان می‌دهد که در افرادی که ریتمهای پیوسته در ادرار دارند، بیشتر از افرادی که ریتمهای غیرپیوسته دارند، میزان خیزندگی عصبی در مراحل مصرف غذا کاهش می‌یابد. این نتایج نشان می‌دهد که ریتمهای پیوسته در ادرار باعث افزایش میزان خیزندگی عصبی می‌شود. در مطالعه ای که در دانشگاه تهران انجام شد، نشان داده شد که ریتمهای پیوسته در ادرار باعث افزایش میزان خیزندگی عصبی می‌شود. این نتایج نشان می‌دهد که در افرادی که ریتمهای پیوسته در ادرار دارند، بیشتر از افرادی که ریتمهای غیرپیوسته دارند، میزان خیزندگی عصبی در مراحل مصرف غذا کاهش می‌یابد. این نتایج نشان می‌دهد که ریتمهای پیوسته در ادرار باعث افزایش میزان خیزندگی عصبی می‌شود. در مطالعه ای که در دانشگاه تهران انجام شد، نشان داده شد که ریتمهای پیوسته در ادرار باعث افزایش میزان خیزندگی عصبی می‌شود. این نتایج نشان می‌دهد که در افرادی که ریتمهای پیوسته در ادرار دارند، بیشتر از افرادی که ریتمهای غیرپیوسته دارند، میزان خیزندگی عصبی در مراحل مصرف غذا کاهش می‌یابد.
کاهش گذشته و در آخرین ساعت پررسی (6 صبح) به حداکثر خود رسیده است. میزان فعالیت ان-استیل ترانسفراز در روز (در طول 12 ساعت نشان نور مستند) صفر است (2).

شکل 1- تغییرات آنزیم ان-استیل ترانسفراز در ساعت مختلف

تجربیات بر روی سری از حیوانات و هر سری شامل 8 دسته و هر دسته شامل 8 موش صحرا اجرای گردیده است:

- سری اول با رژیم تجربی D/D از ساعت 6 بعد از ظهر تا 8 صبح.
- سری دوم با رژیم تجربی D/D از ساعت 10 شب تا 15 صبح.
- سری سوم با رژیم تجربی D/D از ساعت 2 صبح تا 7 بعد از ظهر.
در سری دوم میزان فعالیت ان-استیل ترانسفراز در ساعت 10 شب (به چاپ ساعت 6 از از ظهر سری اول) رو به افزایش گذاشته و حداکثر فعالیت آنژیامی در حوالی ساعت 3 صبح مشاهده شده (شکل 1 منحنی نازک) و در ساعت 10 صبح این فعالیت خانمه یافته است. در سری سوم میزان فعالیت آنژیامی از ساعت 2 صبح روز به افزایش گذاشته دیده و ساعت 9 این منطقه به حداکثر رسیده و در ساعت 12 ظهر خانمه بافته است (شکل 1 منحنی بلند).

بحث و نتایج گیری
ریتم تولید مالاتونین توسط ریتم فعالیت ان-استیل ترانسفراز تعیین می‌شود زیرا این آنتی‌تیودین پیش‌ساز مالاتونین، به عنوان استیل سروترونین را به مالاتونین هدایت می‌کند. (4)

ریتم ان-استیل ترانسفراز توسط یک پیوند صرفاً سیکل ریتم (Circadian) کنترل می‌شود که در هسته‌های سورپراکیناسیاتیک هیپوتالاموس (Supra Chiasmatic Nucleus) قرار دارد. (7)

REFERENCES
3- Illnerova, H. Mammalian circadian clock and its resetting NIPS, 6, 129, 1991
4- Klein, D. C., Moore, R. J. Pineal N- acetyl transferase and hydroxyindole-o-methyltransferase: Control by the retinal hypothalamic tract and the suprachiasmatic nucleus. Brain Res. 174, 245, 1979
9- Sadeghi-Louyeh, A. Modifications metabolites Provouques par La suppression de l' alternance lumiere-obscure' Role de la glande pineale. These de ETAT ES-science, 1980

سال اول/ شماره 02/ تابستان 1372
NIGHTLY RHYTHM OF N-ACETYL TRANSFERASE
ACTIVITY IN PINEAL GLAND OF RAT

A. Sadeghi Looyea, M.D. *

ABSTRACT
Living organisms have multiple biological rhythms. Some of these rhythms are endogenous and some are under the influence of light and dark cycles during 24-hours. Nowadays periodic changes in melatonin secretion from pineal gland and changes in N-acetyl transferase (NAT) activity which influence the melatonin secretion rate has been acknowledged as a basic rhythm. In this study NAT activity in pineal gland of rats during the night in which the rate of melatonin synthesis reaches a maximum has been investigated. According to the techniques employed in the experiments it has become evident that NAT activity depends on the length of light exposure in the environment and, variations of environmental light, considerably changes pineal gland NAT activity by sympathetic innervation via norepinephrine release.

Key words: 1- Pineal gland 2- Melatonin 3- N-acetyl transferase

* Associate professor of physiology—Iran University of Medical Sciences