تعیین فراهمی زیستی نسبی نمونه‌های متفاوت کبسول سفالسین

سفالسین یکی از سفالوسپورین‌های تسلیم نسل اول یا کاردبرد بالینی فروآمین می‌باشد که بصورت‌های مختلف تجویز می‌گردد. در تجویز خوراکی، این دارو بر سرعت جذب شده و به میزان وسیعی در اکثر بافت‌ها و ماشیات بدن توزیع می‌شود. به شیوع از 90% سفالسین بصورت داروی نهیضیاً از طریق کله‌ها دفع می‌گردد. با توجه به تنویع در فرمولاسیون فرم خوراکی سفالسین در ایران و تنویع در منابع خرید مناسب اولیه آن بررسی فراهمی زیستی نسبی این فرمولاسیون‌ها و مقایسه آنها با یک نمونه خارجی ضروری به نظر می‌رسد.

RELATIVE BIOAVAILABILITY OF CEPHALEXIN DIFFERENT BRANDS OF CAPSULES

M.K. Hassanzadeh *
S. Fazli-Bazzaz
A. Shirazie

ABSTRACT

In a cross over study eight normal human volunteers were employed. The bioavailability of different commercial brands of cephalixin capsules were examined. The relative bioavailability of four brand (I,II,II,III,II) manufactured by two different domestic companies were compared with one brand (Keflex) which was manufactured by Lilly pharmaceutical company, England. The plasma and urine cephalixin concentration were determined by microbiological assay (disk diffusion) using Sarcina Lutea ATCC 9341 as test organism. Plasma and urine data were used to evaluate various pharmacokinetic parameters cephalixin including K1/2, C1/F, Vd/F, Tmax, Cmax AUC and F (relative).

Results obtained from urinary data were supported the plasma data. The analysis of variance, to compare relative bioavailability and other pharmacokinetic parameters between tested samples were performed. These information indicates that there are no significant differences between the five different tested brands and they are bioequivalent. Therefore it can be suggested that brands (I,II,II,III,II) which formulated by domestic manufactures are bioequivalent and comparable to each other and to the one formulated by Lilly pharmaceutical company.

Key Words: 1) Cephalixin 2) Bioavailability
3) Plasma 4) urine

* School of Pharmacy Mashhad University of Medical Sciences Mashhad 9775-1965, IRAN

INTRODUCTION
Cephalixin, (7R)-3-Methyl-7- (α-D-Phenylglycylamino) -3-Cephem-4-Carboxylic Acid Monohydrate, is a semi-synthetic derivative of cephalosporine C. Cephalixin is bactericidal and has a broad spectrum of antimicrobial activity. It has weak bondability to blood protein, has no metabolites, has low toxicity, and is rapidly absorbed following oral administration to give a high serum level and urine concentration. Cephalixin is excreted unaltered by the kidneys, almost all of the dose being recovered within six hours (11).

In clinical chemotherapy the bioavailability of drugs is a very important subject. It is obvious that all commercially available products do not show bioequivalency. Therefore, the evaluation of the bioavailability of various solid dosage forms especially where the only generic products are available is necessary.

In the present study the relative bioavailability of four generic cephalixin capsules were examined. A known marketed cephalixin capsule (Kelex, Lilly, England) was used to compare the result of the study.

EXPERIMENTAL
Reagent and Materials: Cephalixin monohydrate used as standard material and a marketed cephalixin capsule (Kelex) which also used for comparison to other generic capsules were gifted from Jaber Ibn-Hayyan and Loghman pharmaceutical companies (Tehran, Iran). All the reagent used were Merk analytical grade.

Subjects and Treatments: Eight normal healthy male volunteers, 22-28 years old, weighing between 61-74 Kg participated in this study. The subjects had no past histories to allergic reaction to penicillin and showed normal renal function. All the subject had no concurrent drug treatment for several days before and during the study. Informed written consent was obtained from each subject. The overnight fasting subjects received a single permitted to eat until 3h after dosing. Five different dosage forms (JII, JII, LII, and Kelex) of cephradine on five separate occasions were tested. A known commercial cephalixin capsule (Kelex, Lilly, Pharmaceutical Company, England), was used as standard to be compared with four local generic dosage forms, brand JI and JII, (Jaber Ibn - Hayyan Pharmaceutical Company, Tehran-Iran) and brand LII and LII, (Loghman Pharmaceutical and Hygienic Company, Tehran-Iran). At least one week separated all experiments. The study was designed as a randomized double-blinded complete crossover investigation.

Sampling: Venous blood samples were collected into heparinized glass tubes immediately prior to dosing, and at 0.5, 1, 1.5, 2, 3, 4, 5, 6 and 8 hours after drug
administration. Total urine voids were collected for the following time period after drug administration: 0-1, 1-2, 2-3, 3-4, 4-6, and 6-8 hours. Plasma separated from all blood samples immediately after collection and frozen until the time of analysis. Urine volume was measured and an aliquot was frozen for analysis.

Assay: Plasma and urine sample concentrations were measured by disc diffusion microbiological assays using Sarcina Lutea ATTC 9341 as the test organism. Standard curves for each biological fluid sample were freshly prepared on each day of analysis, using human plasma or a phosphate buffer as the diluent. The lower limit of sensitivity for the cephalixin assay was 0.25 mcg/ml.

Pharmacokinetic Analysis: Plasma and urine data were analysed for appropriate pharmacokinetic parameters using a one compartment open model with first-order absorption \(^{(4,8)}\). Area under the cephalixin plasma concentration versus time curves (AUC) were calculated for all subjects using trapezoidal method. Other pharmacokinetic parameters such as the peak concentration, time of peak concentration, clearance elimination half-life and urinary recovery were calculated and compared for the various dosage forms. The relative bioavailability of various dosage forms were compared using urine and plasma data.

RESULTS AND DISCUSSION

Plasma data: Figure 1 shows the plasma concentration of cephalixin (average of

![Figure 1. Comparison of Mean Cumul. Urinary Excre. of cephalixin after Oral Administration of 500 mg of Each Brands in 8 Subjects](http://journals.tums.ac.ir/attach/18.png)
Relative bioavailability of cephalaxin....... M.K. Hassanzadeh and et al

eight subjects) for five different dosage forms (Keflex, JI, JII, L1, LII). These results indicate that these profiles are very similar. Pharmacokinetic parameters which have been utilized as a function of the rate of drug absorption are the peak plasma concentration and time of peak plasma concentration\(^{(12)}\). The mean time of peak plasma concentration (Tmax) for all brands and subjects was 1.12±0.11 h (table 1).

Table 1: Mean Pharmacokinetic Parameters of Cephalaxine after Oral Administration of Various Cephalaxine Capsules to Eight Subjects

<table>
<thead>
<tr>
<th>BRAND</th>
<th>K</th>
<th>T 1/2</th>
<th>CL/F</th>
<th>V/F</th>
<th>Tmax</th>
<th>Cmax</th>
<th>AUC(0—∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L/h)</td>
<td>(h)</td>
<td>L/h</td>
<td>(L)</td>
<td>(h)</td>
<td>(μ g/mL)</td>
<td>(μ g/mL)</td>
</tr>
<tr>
<td>Keflex</td>
<td>0.64</td>
<td>1.1</td>
<td>18.5</td>
<td>28.6</td>
<td>1.1</td>
<td>16.2</td>
<td>28.3</td>
</tr>
<tr>
<td>J.I</td>
<td>0.63</td>
<td>1.1</td>
<td>21.4</td>
<td>33.6</td>
<td>1.1</td>
<td>14.3</td>
<td>24.4</td>
</tr>
<tr>
<td>J.II</td>
<td>0.66</td>
<td>1.1</td>
<td>18.4</td>
<td>28.1</td>
<td>1.1</td>
<td>15.0</td>
<td>28.6</td>
</tr>
<tr>
<td>L.I</td>
<td>0.60</td>
<td>1.2</td>
<td>16.2</td>
<td>27.2</td>
<td>1.1</td>
<td>18.1</td>
<td>32.0</td>
</tr>
<tr>
<td>L.II</td>
<td>0.67</td>
<td>1.0</td>
<td>18.3</td>
<td>27.3</td>
<td>1.3</td>
<td>13.3</td>
<td>28.5</td>
</tr>
<tr>
<td>Mean±S.D</td>
<td>0.64±0.03</td>
<td>1.1±0.1</td>
<td>18.5±1.8</td>
<td>29.0±2.7</td>
<td>1.1±0.1</td>
<td>15.4±1.8</td>
<td>28.4±2.7</td>
</tr>
</tbody>
</table>

which is in agreement with other reports \((1,7,9,13)\). Mean peak plasma concentration (Cmax) for all tested brands and subjects were 15.40±1.85 mcg/ml (table 1). This value agrees with other reports \(3,7,9,10,13\). Statistical analysis of the Cmax and Tmax data indicated no significant differences \((p=0.05)\) between different brands and subjects. Other pharmacokinetic parameters of cephalaxin were calculated using individual data after administration of various dosage forms (table 1). All the pharmacokinetic parameter values are in agreement with the data reported in the literature \(7,9,13\). Statistical analysis of these data showed no significant differences \((p=0.05)\) between the pharmacokinetic parameters of five different tested dosage forms. The extent of absorption of various dosage forms evaluated using area under the plasma concentration-time curve (AUC), (table 1). The relative bioavailability (Keflex, used as standard, 100% availability assumed) of all tested brands is shown in table 2. No statistically significant differences \((p=0.05)\) between the different brands of cephalaxin capsules were observed. However significant inter subject variation was
observed table 2.

Table 2: Relative Bioavailability of Five Different Cephalexine Capsules

<table>
<thead>
<tr>
<th>BRAND</th>
<th>S.K.</th>
<th>J.E.</th>
<th>M.S.H.</th>
<th>M.R.</th>
<th>A.R.</th>
<th>N.B.</th>
<th>A.H.</th>
<th>M.K.</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keflex</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100(......)</td>
</tr>
<tr>
<td>J.I</td>
<td>131</td>
<td>109</td>
<td>60</td>
<td>59</td>
<td>75</td>
<td>82</td>
<td>103</td>
<td>95</td>
<td>89.2(±25.0)</td>
</tr>
<tr>
<td>J.II</td>
<td>105</td>
<td>99</td>
<td>108</td>
<td>111</td>
<td>91</td>
<td>96</td>
<td>112</td>
<td>84</td>
<td>100.8(±10.0)</td>
</tr>
<tr>
<td>L.I</td>
<td>109</td>
<td>125</td>
<td>116</td>
<td>110</td>
<td>116</td>
<td>101</td>
<td>112</td>
<td>116</td>
<td>113.1(±7.0)</td>
</tr>
<tr>
<td>L.II</td>
<td>87</td>
<td>104</td>
<td>102</td>
<td>90</td>
<td>127</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>101.0(±12.02)</td>
</tr>
</tbody>
</table>

Urinary excretion of cephalixin: Since cephalixin is eliminated unchanged in the urine, the percentage of the total dose excreted can be used as indication of bioavailability⁴,⁸. Since the concentration of cephalixin in the urine sample collected at 8 hours showed negligible value, therefore the cumulative amount excreted after 6 hours would be a proper indication of the extent of cephalixin absorption. Figure 2 shows the mean cumulative cephalixin excreted after administration of five different brands. The mean value for percentage of administered dose excreted over the period

![Figure 2. Comparison of Mean Plasma Cephalixin](image-url)
of 6 hours to eight subjects is 80.94 ± 2.44 (range from 78.76 to 84.84 %dose), which is similar to the other previously reported values (2,6,7). No significant statistical differences (p = 0.05) between the different brands were observed. The relative bioavailability of various dosage forms were estimated using cumulative amount of unchanged cephalaxin excreted. Analysis of variance of these data showed no significant statistical differences (p = 0.05) between the relative bioavailability of all tested brands. These results support the information obtained from plasma Data.

Comparison of plasma and urinary Data: The mean plasma half-life values of cephalaxin in eight subjects after oral administration of five different brands of cephalaxin capsules were calculated from urine data (0.81±0.01 hours) and from plasma data (1.1±0.05) which are farely in good agreement. Comparison of relative bioavailability the area under the plasma time curve (AUC), total urinary recovery of drug (%dose), Ae ∞ and other pharmacokinetic parameters clearly shows the results obtained from urinary data clearly support the information obtained from plasma data.

REFERENCES

