تعیین فراهمی زیستی نسیب نمونه‌های متفاوت کپسول سفالکسین

علیرضا اسدالله شیرازی
صفیه فاضلی براز
محمد حسن زاده خیاط

چکیده:
سفالکسین یکی از سفالوسپورین‌های نسل اول یا کاربرد بالینی فراوان می‌باشد که بصورت‌های مختلف تجویز می‌گردد. در تجویز خوراکی، این دارو سرعت ژب شده و به میزان وسیعی در اکثر بافت‌ها و سایر بدن تنوزیع می‌شود، به یک‌صد ۹۰٪ سفالکسین بصورت دارویی تغیر نیافته از طریق کلیه‌ها دفع می‌گردد. با توجه به تنوع در فرمولاسیون فرم خوراکی سفالکسین در ایران و تنوع در منابع خرید مواد اولیه آن، بررسی فراهمی زیستی نسیب این فرمولاسیون‌ها و مقایسه آنها با یک نمونه خارجی ضروری به نظر می‌رسد.

در این مطالعه از هشت داوطلب مورد سلام و جهان‌نمای متفاوت کپسول سفرادین ساخت دو کارخانه داخل کشور Keflex (نمونه‌های I.J.I.I, I.I.I.I) و یک نمونه خارجی ساخت کارخانه Lilly انگلستان با نام تجاری Lilly روش سنجش میکروبی آنتی‌بیوتیک‌ها و با استفاده از متد انتشار در دیسک تعیین گردید.

با استفاده از محاسبه‌ای بالاسایی و اداری رسم شده برای سفالکسین پارامترهای مختلف فارماکوکینتیکی و فراهمی زیستی نسیب آن محاسبه گردید. نتایج اداری بدست آمده تأیید کننده نتایج خویش بود. بررسی‌های انجام شده نشان داد که نتایج بدست آمده در توافق کامل با نتایج گزارش شده در مقالات مختلف بود. کلیه پارامترهای فارماکوکینتیکی و هارمونیز زیستی نسیب محاسبه‌شده از داده‌های خویش و اداری‌با استفاده از آزمون آماری مورد ارزیابی قرار گرفته و مشخص شد که این پارامترها برای نمونه‌های داخلی با نمونه خارجی مشابه می‌باشند. بنابراین ترتیب این مطالعه مشخص کننده هم‌ارز و متعلق به نظر ژن و پارامتر‌های سرم و تحقیق (نمونه‌های متفاوت کپسول سفالکسین ساخت داخل کشور با نمونه خارجی مورد بررسی می‌باشد و این نمونه‌ها هیچگونه تفاوت معنی‌داری با یکدیگر ندارند.

کلید واژه‌ها: ۱- سفالکسین
۲- تکثیر
۳- پلاسمای

دانشکده داروسازی، دانشگاه علوم پزشکی مشهد

سال سوم / شماره ۲ / بهار و تابستان ۱۳۷۵

۱۷۹ مجله دانشگاه علوم پزشکی ایران
RELATIVE BIOAVAILABILITY OF CEPHALEXIN DIFFERENT BRANDS OF CAPSULES

M.K. Hassanzadeh*
S. Fazli-Bazzaz
A. Shirazie

ABSTRACT

In a cross over study eight normal human volunteers were employed. The bioavailability of different commercial brands of cephalexin capsules were examined. The relative bioavailability of four brand (I, I, II, L, I, L, II) manufactured by two different domestic companies were compared with one brand (Keflex) which was manufactured by Lilly pharmaceutical company, England. The plasma and urine cephalexin concentration were determined by microbiological assay (disk diffusion) using Sarcina Lutea ATCC 9341 as test organism. Plasma and urine data were used to evaluate various pharmacokinetic parameters cephalexin including K_t, $t_{1/2}$, C1/F, Vd/F, T_{max}, C_{max}, AUC and F (relative).

Results obtained from urinary data were supported the plasma data. The analysis of variance, to compare relative bioavailability and other pharmacokinetic parameters between tested samples were performed. These information indicates that there are no significant differences between the five different tested brands and they are bioequivalent. Therefore it can be suggested that brands (I, I, II, L, I, L, II) which formulated by domestic manufactures are bioequivalent and comparable to each other and to the one formulated by Lilly pharmaceutical company.

Key Words: 1) Cephalexin 2) Bioavailability
3) Plasma 4) urine

* School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-165, IRAN

JIUMS 16
INTRODUCTION
Cephalexin, (7R)-3-Methyl-7- (α-D-Phenylglycylamino) -3-Cephem-4Carboxylic Acid Monohydrate, is a semisynthetic derivative of cephalosporine C. Cephalexin is bactericidal and has a broad spectrum of antimicrobial activity. It has weak bondability to blood protein, has no metabolites, has low toxicity, and is rapidly absorbed following oral administration to give a high serum level and urine concentration. Cephalexin is excreted unaltered by the kidneys, almost all of the dose being recovered within six hours.

In clinical chemotherapy the bioavailability of drugs is a very important subject. It is obvious that all commercially available products do not show bioequivalency. Therefore, the evaluation of the bioavailability of various solid dosage forms especially where the only generic products are available is necessary.

In the present study the relative bioavailability of four generic cephalexin capsules were examined. A known marketed cephalexin capsule (Keflex, Lilly, England) was used to compare the result of the study.

EXPERIMENTAL
Reagent and Materials: Cephalexin monohydrate used as standard material and a marketed cephalexin capsule (Keflex) which also used for comparison to other generic capsules were gifted from Jaber Ibn-Hayyan and Loghman pharmaceutical companies (Tehran, Iran). All the reagent used were Merk analytical grade.

Subjects and Treatments: Eight normal healthy male volunteers, 22-28 years old, weighing between 61-74 Kg participated in this study. The subjects had no past histories to allergic reaction to penicillin and showed normal renal function. All the subject had no concurrent drug treatment for several days before and during the study. Informed written consent was obtained from each subject. The overnight fasting subjects received a single permitted to eat until 3h after dosing. Five different dosage forms (JI, JII, LI, LII and Keflex) of cephadrine on five separate occasions were tested. A known commercial cephalexin capsule (Keflex, Lilly, Pharmaceutical Company, England), was used as standard to be compared with four local generic dosage forms, brand JI and JII, (Jaber Ibn - Hayyan Pharmaceutical Company, Tehran-Iran) and brand LI and LII, (Loghman Pharmaceutical and Hygenic Company, Tehran-Iran). At least one week separated all experiments. The study was designed as a randomized double - blinded complete crossover investigation.

Sampling: Venous blood samples were collected into heparinized glass tubes immediately prior to dosing, and at 0.5, 1, 1.5, 2, 3, 4, 5, 6 and 8 hours after drug
administration. Total urine voids were collected for the following time period after drug administration: 0-1, 1-2, 2-3, 3-4, 4-6, and 6-8 hours. Plasma separated from all blood samples immediately after collection and frozen until the time of analysis. Urine volume was measured and an aliquot was frozen for analysis.

Assay: Plasma and urine sample concentrations were measured by disc diffusion microbiological assays using Sarcina Lutea ATCC 9341 as the test organism. Standard curves for each biological fluid sample were freshly prepared on each day of analysis, using human plasma or a phosphate buffer as the diluent. The lower limit of sensitivity for the cephalexin assay was 0.25 mcg/ml.

Pharmacokinetic Analysis: Plasma and urine data were analysed for appropriate pharmacokinetic parameters using a one compartment open model with first-order absorption (4,8). Area under the cephalexin plasma concentration versus time curves (AUC) were calculated for all subjects using trapezoidal method. Other pharmacokinetic parameters such as the peak concentration, time of peak concentration, clearance elimination half-life and urinary recovery were calculated and compared for the various dosage forms. The relative bioavailability of various dosage forms were compared using urine and plasma data.

RESULTS AND DISCUSSION

Plasma data: Figure 1 shows the plasma concentration of cephalexin (average of

![Figure 1. Comparison of Mean Cumul. Urinary Excre. of cephalexin after Oral Administration of 500 mg of Each Brands in 8 Subjects](image-url)

Relative bioavailability of cephalexin........... M.K. Hassanzadeh and et al

eight subjects) for five different dosage forms\textit{(Keflex, JI,JII,LI,LIIL)}\textit{. These results indicate that these profiles are very similar. Pharmacokinetic parameters which have been utilized as a function of the rate of drug absorption are the peak plasma concentration and time of peak plasma concentration\textit{(12)}\textit{. The mean time of peak plasma concentration (Tmax) for all brands and subjects was }1.12\pm0.11\text{ h (table 1)\textit{.}}\textit{}}

\textit{Table 1: Mean Pharmacokinetic Parameters of Cephalexine after Oral Administration of Various Cephalexine Capsules to Eight Subjects}

<table>
<thead>
<tr>
<th>BRAND</th>
<th>K</th>
<th>T 1/2</th>
<th>CL/F</th>
<th>V/F</th>
<th>Tmax</th>
<th>Cmax</th>
<th>AUC(0_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L/h)</td>
<td>(h)</td>
<td>L/h</td>
<td>(L)</td>
<td>(h)</td>
<td>(\mu g/mL)</td>
<td>(\mu g/mL)</td>
</tr>
<tr>
<td>Keflex</td>
<td>0.64</td>
<td>1.1</td>
<td>18.5</td>
<td>28.6</td>
<td>1.1</td>
<td>16.2</td>
<td>28.3</td>
</tr>
<tr>
<td>J.I</td>
<td>0.63</td>
<td>1.1</td>
<td>21.4</td>
<td>33.6</td>
<td>1.1</td>
<td>14.5</td>
<td>24.4</td>
</tr>
<tr>
<td>J.II</td>
<td>0.66</td>
<td>1.1</td>
<td>18.4</td>
<td>28.1</td>
<td>1.1</td>
<td>15.0</td>
<td>28.6</td>
</tr>
<tr>
<td>LI</td>
<td>0.60</td>
<td>1.2</td>
<td>16.2</td>
<td>27.2</td>
<td>1.1</td>
<td>18.1</td>
<td>32.0</td>
</tr>
<tr>
<td>L.II</td>
<td>0.67</td>
<td>1.0</td>
<td>18.3</td>
<td>27.3</td>
<td>1.3</td>
<td>13.3</td>
<td>28.5</td>
</tr>
<tr>
<td>Mean±S.D</td>
<td>0.64±0.03</td>
<td>1.1±0.1</td>
<td>18.5±1.8</td>
<td>29.0±2.7</td>
<td>1.1±0.1</td>
<td>15.4±1.8</td>
<td>28.4±2.7</td>
</tr>
</tbody>
</table>

which is in agreement with other reports (1,7,9,13). Mean peak plasma concentration (Cmax) for all tested brands and subjects were 15.40±1.85 mcg/ml (table 1). This value agrees with other reports (3,7,9,10,13). Statistical analysis of the Cmax and Tmax data indicated no significant differences (p=0.05) between different brands and subjects. Other pharmacokinetic parameters of cephalexin were calculated using individual data after administration of various dosage forms (table 1). All the pharmacokinetic parameter values are in agreement with the data reported in the literature (7,9,13). Statistical analysis of these data showed no significant differences (p=0.05) between the pharmacokinetic parameters of five different tested dosage forms. The extent of absorption of various dosage forms evaluated using area under the plasma concentration-time curve (AUC), (table 1). The relative bioavailability (Keflex, used as standard, 100% availability assumed) of all tested brands is shown in table 2. No statistically significant differences (p=0.05) between the different brands of cephalexin capsules were observed. However significant inter subject variation was
observed table 2.

Table 2: Relative Bioavailability of Five Different Cephalexine Capsules

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keflex</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>J.I</td>
<td>151</td>
<td>109</td>
<td>60</td>
<td>59</td>
<td>75</td>
<td>82</td>
<td>103</td>
<td>95</td>
</tr>
<tr>
<td>J.II</td>
<td>105</td>
<td>99</td>
<td>108</td>
<td>111</td>
<td>91</td>
<td>96</td>
<td>112</td>
<td>84</td>
</tr>
<tr>
<td>L.I</td>
<td>109</td>
<td>125</td>
<td>116</td>
<td>110</td>
<td>116</td>
<td>101</td>
<td>112</td>
<td>116</td>
</tr>
<tr>
<td>L.II</td>
<td>87</td>
<td>104</td>
<td>102</td>
<td>90</td>
<td>127</td>
<td>100</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

Mean (±S.D.)

- Keflex: 100 (±…….)
- J.I: 89.2 (±25.0)
- J.II: 100.8 (±10.0)
- L.I: 113.1 (±7.0)
- L.II: 101.0 (±12.02)

Urinary excretion of cephalixin: Since cephalixin is eliminated unchanged in the urine, the percentage of the total dose excreted can be used as indication of bioavailability (4,8). Since the concentration of cephalixin in the urine sample collected at 8 hours showed negligible value, therefore the cumulative amount excreted after 6 hours would be a proper indication of the extent of cephalixin absorption. Figure 2

![Figure 2. Comparison of Mean Plasma Cephalexin](image)

Concen. after Oral administration of 500 mg of Each Brands in 8 subjects

shows the mean cumulative cephalxin excreted after administration of five different brands. The mean value for percentage of administered dose excreted over the period
CONCLUSION

The plasma and urine data of this study demonstrate that the bioavailability and other pharmacokinetic parameters of cephalexin after single oral administration of five different dosage forms of cephalexin capsules. No significant statistical differences (p=0.05) can be demonstrated in any of the pharmacokinetic parameter measured at any of dosage forms used in this investigation when comparing the four different generic agents, (JI, JII, LI, LII) to a known marketed cephalexin capsule (Keflex). The urinary data was supported the plasma data in all cases.

The results of this study indicates that the behavior of different tested brands of cephalexin capsules are compatible and bioequivalent.

ACKNOWLEDGMENT

This work supported by a grant from Jaber Ibn-Hayyan and Loghman Pharmaceutical Companies. The authors would like to thank the authorities in school of pharmacy Mashhad University of Medical Sciences for their cooperations.

REFERENCES

