پیشرفت‌های اخیر در درمان مسمومیت با حشره‌کش‌های فسفید آلی

مهدي بلالی

چکیده:

سموم فسفید آلی به میزان وسیعی در دفع آفات نباتی و هم به عنوان عوامل اتصال در جنگ‌های شیمیایی مورد استعمال قرار گرفته‌اند. حشره‌کش‌های فسفید آلی بطور فراوان وارد کننده شده و متصادن‌های اغلب بدون کنترل در دسترس افراد قرار می‌گیرند. به‌همین دلیل، مسمومیت حاد با این سموم بویه نوع عمدی بسیار شایع بوده به نوبه‌ی که ۲۵۰ نفر (۲/۱۸٪) از مسمومین بستری، درمان نمی‌شد. با وجود تجویز و نوع پادزهری‌های ناشی از سموم فسفید آلی نسبتاً زیاد (حدود ۱۰/۱٪)، گزارش شدیدست. در مورد اثر درمانی سولفات آئروپین در مسمومیت با سموم فسفید آلی از قبیل اتفاق نظر وجود داشته‌است اما در

خصوص میزان و نحوه تجویز این بادکنک از اولین هدهشت میلادی به توجه به تجربیات درمانی مسمومین مشاهده و تأیید آن از سوی جامعه عالیی بین‌المللی با تزریق مقدار زیاد آئروپین تا حد مسمومیت خفیف از میزان مرگ و میر سموم فسفید آلی کاسته‌شده‌است.

پیش‌کیه‌ها به عنوان فعال کننده آزمایش‌گاه‌های کولین استرازو کنترل آثار نیکوتین مسمومیت با حشره‌کش‌های فسفید آلی مورد استفاده واقع شده‌اند. تجربیات بالینی در درمان مسمومیت با حشره‌کش‌های فسفید آلی مسمومین مشاهده و گزارش‌های حکیمی از سری‌لشکریان (مجله لاتن شماره ۲۳۹ سال ۱۹۹۷) مؤثر عدم تأثیر اکسین‌ها در گیری‌های این مسمومیت میان باشند. پروتئین بالینی ۱۲۱ بهار مسمومیت با حشره‌کش‌های فسفید آلی که طی سابقه‌ی ۱۳۷۲ در بخشی که اکسین درآمده‌های کودک‌ها بودند، آنتی‌ک بودند یک واکسن، به عنوان یک درمانی همبودی ۲۳۵/۰ می‌تواند بین مقداری این دارو و طول دوره بستری (۱/۰/۰۰) میزان مارگ و میر ۲/۰/۰ برای درمان مسمومیت حشره‌کش‌های فسفید آلی می‌باشد. تأیید به‌نفعای این نتایج مستلزم انجام یک تحقیق این‌دستگاه کنترل شده بالینی می‌باشد که خوشبختانه در دست انجام است.

* پیش‌کیه مسمومین بیمارستان امام رضا (ع) - دانشگاه علوم پزشکی مشهد

جله دانشگاه علوم پزشکی ایران

سال سوم / شماره ۱ و ۲ / بهار و تابستان ۱۳۷۵

۱۷۸
RECENT ADVANCES IN TREATMENT OF
OP PESTICIDE POISONING

M.Balali-Mood*
M.Shariat

ABSTRACT

Organophosphate (OP) compounds have largely been used as
pesticides and also as nerve agents in Chemical Wars. OP pesticides
have frequently been imported and freely available to the public
without usage control. Therefore, OP poisoning, mainly intentional
type, is very common; and accounts for 21.8% (250 patients) of the
total admission to the hospital between 21 March 1994 and 20
March 1995.

OP compounds induce accumulation of acetyl choline by
inhibition of acetyl cholinesterase leading to the stimulation of
muscarinic and nicotinic receptors. Muscarinic effects are
counteracted successfully by atropine sulfate, but the therapeutic
effects of oximes on nicotinic receptors and cholinesterase
reactivation have not been observed in clinical practice. Clinical
observations of the author and a report from Sri Lanka (Lancet
339,1992), indicates no therapeutic effects of oximes in OP
poisoning. Case notes of 317 Treatment Centres between 21 March
1993 and 20 March 1995 were studied.

There were significant positive correlations between the oxime
doses and either hospitalization days ($r=0.625$, $p<0.001$) or
mortality rate ($=0.718$, $p<0.01$).

It seems that oximes had no therapeutic effects on OP pesticide
poisoning. However, a prospective investigation is currently
undertaken to confirm this hypothesis.

Key Words: 1) Pesticide Poisoning 3) Acetylcholinesterase
2) Organophosphate (OP) compound 4) Oxime

*Poisons Treatment Centre, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, I.R.Iran

INTRODUCTION

Organophosphates (OP) have been used mainly as pesticides and also as nerve agents in chemical wars. OP pesticides have been imported, distributed and used in this country without proper control. Therefore, poisoning particularly suicidal attempts with these chemicals are very common and accounted for 250 (21.8%) admissions to the Poisons Treatment Centre and 25 (38%) deaths in the year of 1994.

Op inhibits cholinesterase enzyme and thus acetylcholine accumulates at nerve ending and stimulates muscarinic and nicotinic receptors. Muscarinic stimulation is reduced by atropine sulphate. Oximes have been used for relief of nicotinic stimulation and cholinesterase reactivation\(^2\), but the mortality rate is still around 10%\(^3\). The effects of atropine sulphate have long been established, although the dosing regimens were different. Based on clinical experience, the proposed high doses of atropine by Mashhad Poisons Treatment Centre are now universally approved. The following mechanisms for oximes have been reported\(^4\):

1) Dissociation of phosphorylated binding of the enzyme and OP.
2) Direct attack of oxime at free molecule of OP.
3) Antimuscarinic effects

Based on clinical experience at Mashhad Poisons Treatment Centre and a report from Sri Lanka\(^5\), oximes revealed no significant therapeutic effects on OP poisoning. Over the past few years, there has been shortage of oximes and thus most of the OP cases were treated by atropine alone. It was aimed to compare the cases treated by atropine with those who have received oxime as well. Therefore, the case notes of the OP patients who were treated at the centre between 21 March 1992 and 21 March 1995 were investigated.

PATIENTS & METHODS

Case notes of all patients with OP pesticide poisoning who were hospitalised for more than three days were reviewed. Relevant parameters such as age, sex, clinical features, serum cholinesterase activity (estimated spectrophotometrically using Behring kit), atropine and oxime doses, hospitalisation days and outcome of treatment were recorded. The data were processed by FoxPro program and analysed by Statistical Package for Social Sciences (SPSS). Comparisons were made by Student-t, Pearson and Chi-Square tests.

RESULTS

A total of 317 case notes of OP poisoning including 114 males (36%) and 203 females (64%) with a mean±SD age of 25±14(1-80) years were reviewed. Apart from accidental cases in seven children (2.2%), the remainder were self-poisoning. the most
frequent age group was 16-20 years (107 cases) as shown in figure 1. Seasonal distribution revealed 32% in spring, 22% in summer, 25% in autumn and 21% in winter with no significant differences between them. Based on oxime therapy, 185 (58%) patients were treated by atropine and oximes and 132 (24%) were treated by atropine alone. There were no age and sex differences between the two groups. Main clinical conditions on admission were pulmonary edema, coma and convulsions that were observed in 28, 28, and 16 patients of the oxime group compared with 16, 15 and 13 patients of the atropine alone group, respectively. There were no statistically significant differences between them.

Oximes were given as obidoxime (158 patients), pralidoxime (24 patients) and mixture of both (three patients) with a dose of 0.25 to 38 g (3.5±4.2 g) based on severity of poisoning (Figure 2). Atropine was given based on the severity of intoxication in the doses ranging from 16 to 4650 (314±567) mg in the oxime group compared with 13 to 1685 (205±214) mg in the group receiving atropine alone. The atropine dose difference between the two groups was significant (P < 0.05).

Serum cholinesterase (SChE) activities of the patients were all lower than normal on admission and were less than 200 U/L in 46% of the patients (Normal value > 2000 U/L). There was a good relationship between the clinical severity and reduction of SChE. Reactivations of the enzyme during treatment were different in each group as shown in figures 3 and 4. SChE reactivation was even quicker in the group receiving atropine alone compared to the oxime group, although the difference was not statistically significant (Figure 5).

Hospitalization days in the oxime group were 4 to 19 (6.7±2.9) days. There was a significant positive correlation between the hospitalisation days and oxime doses (r = 0.5149, P < 0.001) as shown in figure 6.

Mortality rate in the group of atropine alone was 6 (4.5%), whereas in the oxime group was 15 (98.1%) patients. The mortality rate in the obidoxime subgroup was 12 (7.6%) and in the pralidoxime subgroup was 3 (13%) as shown in Figure 7. However, there were no statistically significant differences between the groups. There was a small number of patients in the pralidoxime subgroup, thus, statistical analysis between the subgroups was not carried out.

DISCUSSION & CONCLUSION
Since the clinical finding on admission of the oxime group was not significantly different from the group of atropine alone, thus the two groups were comparable clinically. However, atropine doses used in the oxime group were significantly higher than the group of atropine alone. It seems that first of all the oxime group patients were more severely intoxicated than the group of atropine alone, secondly the use of oximes
did not reduce the atropine doses as previously reported
de(4). Similar hospitalisation days of the two groups suggest similar severity of intoxication. The significant positive correlation between the hospitalisation days and oximes particularly the obidoxime group may also have two different explanations: First, those patients who had received more obidoxime were more intoxicated. Second, the adverse effects of obidoxime have more morbidity and thus more hospitalisation days.

SCHE reactivations were similar in both groups. It appears that oximes did not increase the reactivations previously reported (6,7,8).

The dose and duration of oxime therapy in Sri Lanka study were evaluated in sufficient by the European colleagues. In the present study, we did not find any significant difference between the low and high doses of oximes.

Mortality rate was slightly higher in the oxime group than in the atropine alone. It can be concluded that oximes particularly obidoxime had no therapeutic effects on acute OP poisoning. However, a prospective double blind clinical trial is currently undertaken to investigate more carefully about the therapeutic effects of oxime in OP poisoning.

REFERENCES