کاهش عوارض ناشی از مواد حادبیدن دار تزریقی بیونی و غیربیونی

چکیده
احتمال خطر های اقدام تشریحی - درمانی پرتوشناختی به روش بیماران جامع می‌گیرد به عوامل متعددی است
دارد. این عوامل عبارتند از ماده حادبیدن، شرایط بیمار، نوع اقدام انجام شده و مراحل پرتو. به‌این که نسبتاً در ابتدا خطر که به ماده حادبیدن مربوط می‌شود، بهتر است در بیماران که در معرض خطر بیشتر قرار دارند از مواد حادبیدن تزریقی غیربیونی (LOCM استفاده نمود. در صورتی که اختلاف قیمت این مواد با سایر مواد حادبیدن قابل اطمینان باشد، بهتر است به همه بیماران دوره استفاده قرار دهند. در مواردی که می‌توان از روش تشخیصی - درمانی دیگری بدون تزریق استفاده کرد (نخست در بیماران که در معرض خطر بیشتر قرار دارند)، بهتر است آن روش را مورد استفاده قرار دهد.

کلید واژه‌ها: ۱- مواد حادبیدن تزریقی
۲- مواد حادبیدن بیونی
۳- مواد حادبیدن غیربیونی

Mقدمه
بنابر قانون پرتو، پزشکان باید از کاری که عرضه‌ی برای بیمار عاده می‌کنند، بهره‌بردارند. اما در طب امروز ما اغلب در شرایطی قرار می‌گیریم که باید از اقداماتی جهت تحقیق و چه درمانی، استفاده کنیم که علاوه بر فاقدهآبی، عارضه‌های عارضه‌ی منفی پارا باید این بیمار بیشتر از عوارض آنها می‌باشد. بنابراین در پزشکی امروز تحقیق جدیدی از نظر خطر بروز نیاز است. در این تحقیق، پزشک مجاز به انجام اقدامی است که خطر قابل قبولی داشته باشد. عوامل مثل تحرک و هزینه بهبودی در تصمیم‌گیری و انتخاب راه‌حل منابع جمعیت است. احتمال خطر در هر اقدام پرتوشناختی به عواملی مانند قدرت و یکی از اقدام مورد نظر (۲) بیشتر پزشک این مقاله بیشتر به بهبود در مورد مواد حادبیدن بیونی (با

Low Osmolarity Contrast Media = (HOCM) و غیربیونی (باسمولاریتی کم (LOCM) و مقایسه آنها اختراع دارد.

۱. ماده حادبیدن

استفاده از مواد حادبیدن در پرتوشناخت، کمی بعد از گرفت شکسته اپسی (Racetrack) Osborn و S. 1972 در سال ٤٩ موقعیت شدن که یک پارکس در از بیماری پس از تزریق این دارو گرفت همه بود. ماده حادبیدن (Rath و Binz) موقعیت شدن که یک پارکس در از پترود (Pyrindine) اپسی و باکتی‌های همه به‌کار می‌رود و همین باعث شد که این مواد محلی در آزمایشگاه در نکته پیدا-۲-پیدایی-ان-استیک اسید (HOCM

(1) استاندارد پرتوشناختی، بیمارستان شهید هاشمی نژاد دانشگاه علوم پزشکی و خدمات بهداشتی - دانشگاه ایران، خریدن، ۱۳۷۸، زبان فارسی، بالاتر از میدان ریکت، نیروی

سال ششم/شماره ۲/پاییز ۱۳۷۸

۱۸۰ مجله دانشگاه علوم پزشکی ایران

Downloaded from rjms.iums.ac.ir at 20/08 IRDT on Saturday August 3rd 2019
مواد حاجب ییدپارداری تر کنی به ترکانی (Uroselectan) و ماده دیدگیری (Intravenous urography IVU) اینامد. ماده دیدگیری، تکنیکی می‌باشد که در نهایت عکس‌های زیر عروق و سیستم کانال‌ها را ارائه می‌دهد. در این حالت، سیستم کانال‌ها و عروق به روش تکنیکی تاریکی و خاکستری سیستم کانال‌ها از طریق پرتاب ماده دیدگیری به بدن بافت‌های داخلی تاریک شده و عکس‌های آنها را به دست می‌آوریم.

امنیت و احتمالات:

امنیت بسیار مهمی در این کاریک بازی دارد. مقدار کافی ماده دیدگیری را به بدن می‌پرتابیم تا تاریکی در عروق و سیستم کانال‌ها ایجاد شود. هر چند که این ماده به‌طور کلی آسیب‌زور نیست، اما در صورت عوامل مانند بیماری‌های قلبی، افتراق های خونی و ابتلای به هورمون‌های خشک کننده ممکن است افزایش درد و تعود درد را رقم بگیرد.

به عنوان نتیجه، ماده دیدگیری و ابزارهای دیگری که در این کاریک بازی مورد استفاده قرار می‌گیرند، هر دوی آنها می‌توانند منجر به تغییرات هورمونی می‌شوند. بنابراین، قبل از اجرای این کاریک بازی، باید به پزشکان بپرسی کنیم که آیا این فرآیند مناسب و آمن است یا نه.

در نهایت، این کاریک بازی به عنوان یک ابزار نوین در تشخیص و درمان بیماری‌های سیستم کانال‌ها و عروق به‌طور کلی به‌کار می‌رود. به دلیل اینکه می‌تواند اطلاعاتی درباره موقعیت و امکانات داخلی بدن را ارائه دهد، این کاریک بازی در زمینه ی دیگری از درمان‌آمیزی‌های پزشکی نیز به کار می‌رود.
مواد حساس‌پرداز تزریقی بیول و غیربیول
عمل مکانیکی جذب غیربیولی کتپیار (Monomer) اولین ماده حساس‌پرداز تزریقی آمریکایی Optiray™ اثرات عروقی و ضروری زیادی در پردازش ماده شیمیایی (Monomer) یا Inversol™ تزریقی به‌صورت سیال در سطح‌های معمول سیستم عروقی بدن استفاده می‌شود.

مواد حساس‌پرداز تزریقی عبارتند از:
1- (هالوت) در آب (۲) پایداری در حرارت و محفظه تمیزی (۳) از نظر زیست‌پذیری خاصیت آنتیژنی نداشته باشند (۴) گرایانگی نخستین خاصیت غلظت زیاد (۵) ایزواسولار با پاسا باشند (۶) محدودی از دستگاه ادراری دفع گردد (۷) خواص سمی نداشته باشند (۸) قابل قبولی داشته باشند.

شکل ۱ (الف) اولین اورورگرافی تزریقی با این ماده در سال ۱۹۷۸ انجام شد. (ب) ماده حساس‌پرداز، دو اتم ید در یک مولکول ج (ح) عامل شکافته‌پذیری بین هستان اصلی مواد حساس‌پرداز از تشکیل می‌نماید. (د) در این مولکول تمام هاواها با انتهجی اشغال شده‌اند. "R" در شکل فوق تمایلی به شکل همزمانی جذبی کوچکی است که با چاپگزینی Diatrizoate با چاپگزینی COO نیز ممکن می‌باشد. CONHCH3 با چاپگزینی نیز ممکن می‌باشد.

۱۳۷۸ مجله دانشگاه علوم پزشکی ایران
سال ششم/شماره ۲/پاییز
شکل ۲- (الف) در این مولکول بخش کاتيونی که حاوی اتم یود نبود حذف شد؛ این مولکول چهار گروه هیدروکسیل دارد. (ب) و (ج) زنجیره جانپی با توزیع یک کوارت هتروکسیل (د) ماده حاضر یونی با شش اتم یود

شکل ۳- (الف) اولین ماده حاضر منمول گیرینی آمریکنی (ب) ماده حاضر دیمیترولینی
مواد حبیب پدیدار تزریقی بروئی و غیربروئی

خواص حفظ و شیمیائی مواد حبیب

امنیت به علت این اندازه گیری، خاصیت جذب اشعه ایکس را دارد. تزریق مقدار زیاد (40-70 گرم) به تابی تحلیل می‌باشد. انتخاب دیگری که در مواد ورقه‌دار قرار گیرند در حال حاضر 4 دسته از مواد حفظ حبیب مورد استفاده قرار می‌گیرند که همه آنها مشتقات تری‌ایلی اسید پنتوزوی هستند. این مواد حفظ جبران برند: آن (1) تکنریه (Monomers) اورومریک (2) اسپرماین (Dimers) اورومریک (3) اسپرماین (4) اسپرماین (5) بیشتر از مکانیزم‌های

ب. گرانیزوی (Viscosity) ماده حفظ با تعداد ایندیکس بسیاری می‌باشد. عناصری ناقص می‌باشد. تمرکز زنجیره حفظ نقش فنن تیتر و فنن غیربروئی (Viscosity) به‌صورت و روندی مورد استفاده قرار می‌گیرند. مولکول‌های گرانیزوی زیادی دارد. در مواد حفظ غیربروئی نیز گرانیزوی زیاد بوده، که بیشتر از مکانیزم‌های

چ. اتصال به کلسیم و پپتید اسید شیمیائی:

مواد حاوی دی‌اتریزات، به حالت مهرمی با سیستم سرطانی که به یاپان‌های محصور به آن‌ها گفته می‌شود. به کلسیم سرطانی که مدتی به دنبال کاهش آلکالی‌سایز (Calcium channel blocker) می‌گردد. مواد حفظ غیربروئی این امر را ندارند.\(^{(1)}\)

تغییرات همبندی‌مکسیک

با تزریق مواد حفظ، تغییراتی در بدن ایجاد می‌گردد که بر اثر عوامل (Dilatation) غیر قابل مشاهده‌است. افزایش حجم خون در گردن (3) افزایش خون در استری‌های اعیان‌هایی (4) کاهش مقدار عروقی و در نتیجه کاهش فشار خون.

تزریق مواد حفظ موجب ترشح مواد مشه‌های‌های سرطانی، سرطان‌های چربی و دی‌این یکی است. این مواد باعث تغییرات زیر می‌گردد: (1) کاهش خروجی قلب (2) عضله قلب (3) تغییر در فشار خون (4) تغییر حجم پلاسمای (5) تغییر در تعداد

الف. حلالیت در آب - هیدروفیل و اسپرماینی

تعداد مواد حفظ به‌طور محدود در آب می‌باشد. مواد حفظ موجب بروز ایجاد می‌شود. وجود پروتئین‌ها باعث افزایش قندی‌های مولکول‌هایی می‌شود. وجود پروتئین‌ها باعث افزایش رسانائی مولکول‌هایی می‌شود و تغییر در تعادل الکترولیت‌ها می‌شود و این امر می‌تواند به طور موقت باعث تغییراتی پاتولوژی‌زای سرولی شود.\(^{(2)}\) شدید، عوارض فیزیولوژی‌ای (Physiological) را ایجاد کند.\(^{(1)}\) در مواد حفظ غیربروئی، حالاتی در آب به علت وجود گروه‌های هیدروفیل همیشگی (OH) و خاصیت هیدروفیل آنهاست. این امر باعث کاهش می‌باشد. انتقال به پروتئین‌ها می‌شود و این مواد را نظر می‌یابد.\(^{(2)}\

کتابخانه کتاب‌های ایران را به این امر توجه خاطر خنثی کم‌ساز

1378

سال ششم / شماره ۳ / پاییز

186

184 مجله دانشگاه علوم پزشکی ایران
که بادعت عوارض کموناکتاکینک می‌گردد عوارض از هیپرسامولیتیک، قلبی ایالتی به یون کلسمی، غلظت و فرمال شیمیایی کانیون (مثل سدیم با مگنیم). عوارض ناشی از هیپرسامولیتیک عبارتند از: آبزیای خون، افزایش حجم خون و افزایش بازده خون. تغییر در قلبی نفوذی در جدار عروق، تورم و درد و میکروتومی در محل تزریق، افزایش سرعت خون، کاهش فشار خون، اسپیرویی کاروئی خارجی، تغییر قلبی نفوذی سدیم‌های Mg، انسای عروق ناجی (Coronary Blood-brain barrier) تغییرات EKG باردی کاردی، ایمتیا عروق کلیه، کاهش خون کلیه و تغییر در قلبی نفوذی غلظت و ظهور پروتون‌ین در ادرار. عوارض ناشی از همراهای یون سدیم عبارتند از: تغییر ضربان قلب و تاکریه. عوارض ناشی از قلبی اصلی به یون کلسمی عبارتند از: فیبرپلاسیون پلی و کاهش قدرت ایمپیاچ عضلات قلب.

جلوهای عوارض حاد بر حسب شدت 1

<table>
<thead>
<tr>
<th>شدید</th>
<th>متوسط</th>
<th>خفیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>شروع</td>
<td>شروع</td>
<td>شروع</td>
</tr>
<tr>
<td>نبود</td>
<td>نبود</td>
<td>نبود</td>
</tr>
<tr>
<td>خیز زری</td>
<td>خیز زری</td>
<td>خیز زری</td>
</tr>
<tr>
<td>ایست تفنی</td>
<td>ایست تفنی</td>
<td>ایست تفنی</td>
</tr>
<tr>
<td>کاهش درد</td>
<td>کاهش درد</td>
<td>کاهش درد</td>
</tr>
<tr>
<td>تورم</td>
<td>تورم</td>
<td>تورم</td>
</tr>
<tr>
<td>خارج</td>
<td>خارج</td>
<td>خارج</td>
</tr>
<tr>
<td>لیازم</td>
<td>لیازم</td>
<td>لیازم</td>
</tr>
<tr>
<td>تشنج</td>
<td>تشنج</td>
<td>تشنج</td>
</tr>
</tbody>
</table>

جدول 1: تفسیریات عوارض بر حسب شدت

عوارض ماده حاضر

عوارض ماده حاضر به دو دسته تقسیم می‌شوند که عبارتند از: (1) عوارض حاد و (2) عوارض روزه‌ای خاص.

دسته‌ی یک عوارض حاد

این عوارض به دو دسته آنفیلاتوکریتیف (Anaphylactoid) و کموناتیکی (Chemotactic) تقسیم می‌شوند. بیشتر عوارض به علت اثر آنفیلاتوکریتیف هستند ولی عوارض مربوط به آن خفیف‌تر و اصولاً کموناتیکی شدیدتر می‌باشد.

عوارض آنفیلاتوکریتیف اگرچه شیب عوارض آنفیلاتوکسی هستند ولی به علت اثر آنفیلئوکریتیف (Complement) در اثر آنفیلئوکریتیف که منجر به آزادسازی هسته‌امن آنزیم‌های لیپوزوم و فاز اول دهان گشلی (Degradation) و در اثر آنفیلئوکریتیف که منجر به آزادسازی هسته‌امن آنزیم‌های لیپوزوم و در اثر آنفیلئوکریتیف که منجر به آزادسازی هسته‌امن آنزیم‌های لیپوزوم و

فیزیکی مواد تزریقی بر اساس عروق است و بر خلاف عوارض آنفیلاتوکریتیف، مناسب‌تر می‌باشد و غلظت ماده حاضر تزریقی بسیاری دارد. خواص فیزیکی و فیزیکی مواد حاضر

مجله دانشگاه علوم پزشکی ایران 1378 / پاییز 185
مواد حاجب ییدارترین بیوئی و غیربیوئی

عوارض در افزایش که سابقه حساسیت به ماده حاجب
داشتن دارد، بدون تجویز داروهای پیشگیری کننده، ۲۰–۲۵/
است که این مقادیر، به نظر پر احتمال اختلال در
افراز ممکن است. مصرف مواد حاجب غیربیوئی در این
افراز احتمال بروز عوارض را به ۵/۰ کاهش می‌دهد. در افزایش
۰-۵۰٪ خطر ایجاد عوارض از همگروه‌های سی‌بیشت
است. احتمال ایجاد عوارض در افزایش سن می‌تواند از ۵۰ سال کمتر و
در افزایش کلسترول از ۲۰ سال از همه کمتر است. ضعیف
ایجاد عوارض آنتی‌بیوتیک‌ها، چه در مواد حاجب بیوئی و چه در
مواد حاجب غیربیوئی، در افزایش کمتر از ۸۰ سال و بیشتر از
۸۰ سال یکسان گزارش شده‌اند. در افزایش سن، احتمال بروز
عوارض کمتر است که چنانچه قبل از نیز فته شد.
این عوارض با مقدار ماده حاجب تزریق‌شده (دوز مصرفی)
ارتباط مستقیم دارد.

بر اثر گزارش شده‌ی این بروز عوارض حاد باید به ترتیب زیر عمل کرد: (1) عوارض کم‌زاکیدگی، این عوارض در بیماری
مسن، ضعیف و بدلان بهتر است. بیماران باید از نظر
وجود بیماری‌های مهم مثل نارسایی کلیه، بیماری‌های
بیماری‌های شدید قلبی و سایر تهیه کننده پیشنهاد شوند. در این
بیماران پیشی بی سیمی شد و اقدام تشخیصی اکنون به تزریق
باید گیرند و باید این کار است. ماده حاجب ندارد. این افزایش
۸۰٪ جلگیری از عوارض آنتی‌بیوتیک‌ها. در بیماران که سابقه
حساسیت، آرتسی، آسپرامید، سایر مواد حاجب داشته‌اند,
پیش درمانی با کورتیکوستروئید و آنتی‌هیستاماین (مثل
دیفتاییدراین) می‌تواند است. این و گیرنده‌ی این زیر مقدار
تزریق ماده حاجب اکنون است. باید ازا ماده حاجب غیربیوئی
باید در داوآشک سالاری AND آزمایش ایران

سال ششم/شماره ۲/پاییز ۱۳۷۸

۱۸۶

مجله دانشگاه علوم پزشکی ایران
<table>
<thead>
<tr>
<th>شیوع واکنش‌های بی‌دتی (%)</th>
<th>پیش‌درمانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-5</td>
<td>پردنیزولون 50 میلی گرم خوراکی هر 6 ساعت تا ۲۴ ساعت از تزریق ماده حجاب و ویدری</td>
</tr>
<tr>
<td></td>
<td>دیفن هیدراپامین ۵ میلی گرم خوراکی با عضلانی (یک ساعت قبل از تزریق ماده حجاب و ویدری)</td>
</tr>
<tr>
<td>5/0</td>
<td>پردنیزولون/دیفن هیدراپامین (مثل با/ال)</td>
</tr>
<tr>
<td></td>
<td>سولفات اندورین ۲۵ میلی گرم خوراکی (یک ساعت قبل از تزریق ماده حجاب و ویدری)</td>
</tr>
<tr>
<td>14/0</td>
<td>پردنیزولون/دیفن هیدراپامین/افدرين (مثل با/ال)</td>
</tr>
<tr>
<td></td>
<td>سپتامیدین ۲۰۰ میلی گرم خوراکی (یک ساعت قبل از تزریق ماده حجاب و ویدری)</td>
</tr>
<tr>
<td>5/0</td>
<td>متیل پردنیزولون ۲۲ میلی گرم خوراکی (۲ ساعت و ۲ ساعت قبل از تزریق ماده حجاب و ویدری)</td>
</tr>
<tr>
<td>0/5</td>
<td>پردنیزولون/دیفن هیدراپامین (مثل با/ال)</td>
</tr>
<tr>
<td></td>
<td>ماده حجاب غیرپیونی با اسپارتریت کم (Iohexol, Iopamidole)</td>
</tr>
</tbody>
</table>

۱ | Greenberger |

۱ | Lasser |

۱ | Patterson و Greenberger |

۱۹۸۵ | Greenberger (I) |

۱۹۸۷ | Lasser (II) |

۱۹۹۱ | Patterson و Greenberger (III)
مواد حاجب بیدار تریکی یونی و غیریونی

اگر که به صورت موردی و در پاکت‌های باشند، درمان طبی

۱۸۸ مجله دانشگاه علوم پزشکی ایران

سال ششم/شماره ۳/پاییز ۱۳۷۸
جدول ۳- راهنما درمان و اکتشاف حاد به موارد حاد

<table>
<thead>
<tr>
<th>صفت</th>
<th>درمان</th>
<th>علائم و نشانه‌ها</th>
<th>كوکن‌دان</th>
<th>دوز‌دار/رده‌تجزیه</th>
<th>راه‌تجزیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شدید</td>
<td>شیمی‌یاد</td>
<td>Prochlorpromazine</td>
<td>شدید, پرتالمیتی</td>
<td>0.25-1 میلی‌گرم (که در زمان ابتدا 1-0.5 میلی‌گرم)</td>
<td>6-8 ساعت</td>
</tr>
<tr>
<td>متوسط</td>
<td>شیمی‌یاد</td>
<td>پرتالمیتی</td>
<td>تری‌فنیدز</td>
<td>10 میلی‌گرم (که در زمان ابتدا 5 میلی‌گرم)</td>
<td>10 ساعت</td>
</tr>
<tr>
<td>لازم به بیان</td>
<td>شیمی‌یاد</td>
<td>پرتالمیتی</td>
<td>راندیدن</td>
<td>50 میلی‌گرم (که در زمان ابتدا 25 میلی‌گرم)</td>
<td>10 ساعت</td>
</tr>
<tr>
<td>لازم به بیان</td>
<td>شیمی‌یاد</td>
<td>پرتالمیتی</td>
<td>استعمال آن را تا ۱/۷-۱/۵ میلی‌گرم</td>
<td>۷-۸ ساعت</td>
<td></td>
</tr>
</tbody>
</table>

نتهایی
- کمبونات‌های میلی‌گرمی به ازای هر کیلولیتر از وریدی‌ها استفاده می‌شود.
- میکرونیک نیز به خواص خون‌آوری‌گذاری و خون‌آوری‌گذاری نشان می‌دهد.
- میکرونیک نیز به خواص خون‌آوری‌گذاری و خون‌آوری‌گذاری نشان می‌دهد.
- خودداری کنید.
جدول ۳- راهنماهای درمان و اکتشافی جاده به موارد حاد (ادامه)

<table>
<thead>
<tr>
<th>علائم و علائم‌های درمان</th>
<th>داروی / راه جویی</th>
<th>داروی / راه جویی</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش، آبی‌پنجه‌ای و دیریدا</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* افزایش، آبی‌پنجه‌ای و دیریدا |
* افزایش، آبی‌پنجه‌ای و دیریدا |
| هر ۲-۳ دقیقه |
* Metaproterenol |
(Metered dose) |
| (Inhalation) |
* مسیتین |
(Wheezing) |
| (Inhalator) |
* Terbutaline |
(Metered dose) |
| (Inhalator) |
* Albuterol |
(Metered dose) |

کاهش فشار خون

- متغیر باشگاه
- سالانه طبیعی
- حداکثر سرعت
- و محلول

ریتم سینوسی

- طبیعی با
- تاکی کاردی
- برای کاردی

فشار خون و ریتم

- برای کاردی
- سالانه طبیعی
- حداکثر سرعت
- و محلول

برای مورد

- افزایش تریکس
- ۱ میلی‌گرم و ویدی
- افزایش
- سریع
- در ۲ دقیقه تا
- میکس
- ۲ میلی‌گرم و
- ویدی
-

توجه

- مقدار
- ۴-۵ میلی‌گرم
- بیمار
- ریسمین
- مقدار
- افزایش
- در ۲ دقیقه
- ویدی
-

شاخص تغییرات

- مقدار
- افزایش
- در ۲ دقیقه
- ویدی
-

مراجعه

- ماشه دانشگاه علوم پزشکی ایران

سال ششم/شماره ۳/پاییز ۱۳۷۸

۱۹۰
مواد حاجب بیدار تزریقی پویا و غیرپویا

عبارت "میکروکو"، این تغییر وریدی ممکن است آرتیری های وسیع در پوست باشد. در پوستینه که میکروکو در کانالهای دهان و گردن کشیده شده، تغییر وریدی گلیچ به‌طور کامل به‌صورت عمیق در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کامل در میکروکو و در محدوده‌های بیرونی رخ داده است. این تغییرات وریدی به‌طور کام
مواد حاجب پیدا در تزریق جریان و غیر جریان

افرادی که کراتین بهترین گروه از موارد حاضر به اثر فشار بدن دارند، به عنوان موارد "ارجی" شناخته می‌شوند. این موارد شامل مواردی مانند (Dehydration) و (Hydration) می‌باشد. در این موارد، تزریق مخلوط مواد حاجب به خون و گردش خون در سیستم تزریقی انجام می‌گیرد. در این موارد، تزریق مواد حاجب به نهایت کاهش دشواری‌ها و افزایش استحکام و استحکام سیستم تزریقی می‌کند. در این موارد، تزریق مواد حاجب به گمانی می‌رسد که باعث تغییرات در بافت‌سازی و استحکام به خون شود.

کراتین‌ها به علت تغییرات در بافت‌سازی و استحکام به خون، می‌توانند به صورت تجزیه و تحلیل کرده شوند. در این موارد، تزریق مواد حاجب به گمانی می‌رسد که باعث تغییرات در بافت‌سازی و استحکام به خون شود.

REDUCTION OF COMPLICATIONS CAUSED BY IODINATED INTRAVASCULAR CONTRAST MEDIA: IONIC VERSUS NON-IONIC

M. Bozorgzadeh, MD

ABSTRACT

The risk of radiologic procedures is determined by different factors including contrast media, type of disease, procedure and skill of the physician. To reduce the contrast media-related risk, it is wise to use low osmolar contrast media (LOCM) in high-risk patients. When there is negligible cost difference between LOCM and other contrast media, it is wise to use LOCM for all patients.

If an alternative procedure could avoid use of contrast media, it should be preferred (especially in high risk patients).

Key Words: 1) Intravascular iodinated contrast media 2) Ionic contrast media
3) Non-ionic contrast media

1) Assistant Professor of Radiology, Shahid Hasheminezhad Hospital, Iran University of Medical Sciences and Health Services, Vanak Sq, Tehran, Iran

253 JIUMS Vol. 6 No. 3, Autumn 1999